Introduction to the Cover-up Method

To integrate a rational function using the partial fractions method we must
algebraically break it into parts. We’re going to helped in this by a shortcut
called the cover-up method.

We've disguised the easy integral:
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We’ll use the method of partial fractions to unwind this disguise.

as a harder one:

1. Our first step is to write down the integrand. Then we begin to undo the
damage that we did by factoring the denominator (this can be a rather
difficult step).
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2. Next we “set up” some unknowns, preparing to break the rational expres-
sion into pieces whose denominators are the factors we just found
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3. The third step is to solve for the numerators; in this example they are A
and B. Once we've completed this we’ve unwound the disguise.

The cover-up method makes step 3 more efficient and less clumsy.
We solve for A by multiplying by x — 1.
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Notice that we didn’t try to clear the denominators completely; we just cleared
one factor, which was all we needed to do to get A by itself.
If we plug in z = 1 we get:
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This is not a surprise — we saw at the start of the lecture that:
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Question: Why did you choose x = 17

Answer: Because it works really fast — that’s part of the cover-up method.
Notice that if we’d set x = 1 in the original equation we’d have gotten a de-
nominator of zero; that wouldn’t have helped us at all.

What we did was multiply both sides by  — 1 and then immediately set
x = 1; that’s like mutiplying both sides by zero! It turns out to be OK though
because the equation is true ezcept when x = 1, so what we’re really getting is
the limit as x approaches 1.

Setting x = 1 helps us by canceling out the term with the variable B in it.

We’re going to learn a quicker way to do this in a second, but first let’s find
the value of B. To isolate B we multiply both sides by x + 2:
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Then we plug in x = —2:
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We can now replace A and B by the values we’ve found to conclude that:
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What we’ve seen here is why the cover-up method works. Next we’ll see how
we can make it work faster.

Question: Can we use this method if the exponents on x aren’t whole
numbers? Will it work on square roots?

Answer: This only works with polynomials, which have whole numbered
powers of z. For example, 2+ —2 has powers of 2, 1 and 0 in the denominator.
It won’t work with square roots.
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