Integrate by Partial Fractions

Use the method of partial fractions to compute the integral:
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Solution

We first check to see if we can factor the numerator to cancel any terms in the
denominator; we can’t. Since all the terms in the denominator are linear, we
need not try to factor them. The numerator is a second degree polynomial and
the denominator is third degree, so we do not need to perform any long division
of polynomials.

We set up the partial fractions decomposition as follows:
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Now we apply the cover-up method, starting by solving for A:
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We cover up x 4+ 1 and any expression that does not contain = + 1, then plug in
x = —1; the value that makes x + 1 equal 0. We get:
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We repeat this process for B and C:

22 +22 43 B B \¢~
CER == BZa Ne==-g A}
(—2)2+2(-2)+3
(-2+1)(-2+3)

B = -3
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-3+2 = C
c =3
We conclude that:
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If we plug in z = 0 we get % =1- % + 1, so this is probably a correct decom-
position.

We can now break this down into three relatively simple integrals. One
integration is presented in detail below, using the substitution u = x + 3; the

other two are similar:
3 1
/ dr = 3 / —du
r+3 u

= 3lnful+c
= 3ln|z+3|+c

In conclusion,
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We could try to check this by differentiation, but that leads directly to

verifying that our partial fractions decomposition is correct — a time consuming
task.
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