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Finding the Radius of Convergence 

Use the ratio test to find the radius of convergence of the power series 

∞

Solution 

� 
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As Christine explained in recitation, to find the radius of convergence of a series 
n+1∞

cn+1xn we apply the ratio test to find L = lim The value of xcnx . 
cnxn 

n=n0 
n→∞ 

for which L = 1 is the radius of convergence of the power series. 
In this case, 

cn+1x
n+1 

= 
xn+1/(n + 1) 

cnxn xn/n 
n 

= x · 
n + 1 

. 

Taking the limit of this as n goes to infinity, we get: 

n+1cn+1x
L = lim 

cnxnn→∞ 

= lim 
n 

x · 
n + 1 n→∞ 

1 
= lim 

n→∞ 

L = |x|. 

When 

x · 1 − 
n + 1 

|x| < 1, L < 1 and the ratio test tells us that the series will converge. 
> 1, L > 1 and the series diverges. The radius of convergence is 1. For |x| 

∞

This gives us an idea of how close the harmonic series is to being 
n 

n=1 
convergent. 
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