FIRST MIDTERM MATH 18.022, MIT, AUTUMN 10

You	have	50	minutes.	This	test	is	closed	book,	closed	notes,	no	calculators.
							Nε	me:				7

Signature:	
Recitation Time:	

There are 5 problems, and the total number of points is 100. Show all your work. Please make your work as clear and easy to follow as possible.

	8	
Problem	Points	Score
1	20	
2	20	
3	20	
4	20	
5	·20	
Total	100	

1. (20pts) (i) Suppose that the four vectors $\vec{t}, \ \vec{u}, \ \vec{v}$ and \vec{w} lie in the same plane $\Pi.$ Show that

$$(\vec{t} \times \vec{u}) \times (\vec{v} \times \vec{w}) = \vec{0}.$$

(ii) Now suppose that \vec{t} , \vec{u} , \vec{v} and \vec{w} are four non-zero vectors in \mathbb{R}^3 , such that

$$(\vec{t} \times \vec{u}) \times (\vec{v} \times \vec{w}) = \vec{0}.$$

Is it true that these four vectors have to lie in the same plane? If true, explain why and if false, give a counterexample.

2. (20pts) (i) Find a parametric equation for the line l through the two points P=(1,-1,2) and Q=(-1,3,3).

(ii) Find the distance between the line l and the line m given parametrically by (x,y,z)=(t-1,2t+1,3-t).

3. (20pts) (i) Find the volume of the parallelepiped spanned by the vectors $\vec{u}=(1,2,-3),$ $\vec{v}=(1,-2,1)$ and $\vec{w}=(-1,-2,-1).$

(ii) Do the vectors $\vec{u},\,\vec{v}$ and \vec{w} form a right-handed set or a left-handed set?

- 4. (20pts) Let D be the region inside the sphere of radius 2a centred at the origin and outside the cylinder of radius a centred around the z-axis.
- (i) Describe the region D in cylindrical coordinates.

(ii) Describe the region D in spherical coordinates.

- 5. (20pts) Determine whether or not the following limits exist, and if they do exist, then find the limit. Explain your answer.

 (i) $\lim_{(x,y)\to(0,0)} \frac{xy}{x^2+y^2}$.

MIT OpenCourseWare http://ocw.mit.edu

18.022 Calculus of Several Variables Fall 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.