SECOND MIDTERM MATH 18.022, MIT, AUTUMN 10

You hav	ve 50 minutes.	This test is closed book, closed notes, no calculators
		Name:
		Signature:
		Recitation Time:
Tl all y poss	our work. Pleas	ems, and the total number of points is 100. Show se make your work as clear and easy to follow as

Problem	Points	Score
1	20	
2	20	
3	20	
4	20	
5	· 20	
Total	100	

- 1. (20pts) Let $f: \mathbb{R}^3 \longrightarrow \mathbb{R}$ be the function given by $f(x,y,z) = x^3y + y^3z + z^3x 2xyz$. (i) Find the gradient of f at P = (2, -1, 1).

(ii) Find the directional derivative of f at P in the direction of \hat{u} = $\frac{\hat{2}}{3}\hat{i} - \frac{2}{3}\hat{j} + \frac{1}{3}\hat{k}.$

(iii) Find the tangent plane at the point P of the level surface $\{Q \in \mathbb{R}^3 \mid f(Q) = -3\}.$

2. (20pts) Suppose that $F: \mathbb{R}^2 \longrightarrow \mathbb{R}^3$ is differentiable at P = (-1, 4) with derivative

$$DF(-1,4) = \begin{pmatrix} -1 & 1\\ 3 & -2\\ -2 & -1 \end{pmatrix}.$$

Suppose that F(-1,4) = (1,-1,3). Let $f: \mathbb{R}^2 \longrightarrow \mathbb{R}$ be the function f(x,y) = ||F(x,y)||.

(i) Show that the function f(x, y) is differentiable at P.

3. (20pts) Let

$$S = \{ (x, y, z) \in \mathbb{R}^3 \mid x^3y + y^2z^3 + zx^2 = 3 \}.$$

(i) Show that S is the graph of a function z = f(x, y) in a neighbourhood of P = (1, -2, 1).

4. (20pts) Let $\vec{r}\colon I\longrightarrow \mathbb{R}^3$ be a regular smooth curve parametrised by arclength. Let $a\in I$ and suppose that

$$\vec{N}(a) = \frac{2}{7}\hat{i} - \frac{6}{7}\dot{\hat{j}} - \frac{3}{7}\hat{k}, \quad \vec{B}(a) = \frac{3}{7}\hat{i} - \frac{2}{7}\dot{\hat{j}} + \frac{6}{7}\hat{k}, \quad \frac{d\vec{N}}{ds}(a) =$$

Find: (i) $\vec{T}(a)$.

(ii) $\kappa(a)$

(iii) $\tau(a)$

5. (20pts) Let $\vec{F} : \mathbb{R}^2 \longrightarrow \mathbb{R}^2$ be the vector field given by $f(x,y) = y\hat{\imath} - 2\hat{\jmath}$. (i) Is \vec{F} a gradient field (that is, is \vec{F} conservative)? Why?

(iii) Find a flow line that passes through the point (a, b).

MIT OpenCourseWare http://ocw.mit.edu

18.022 Calculus of Several Variables Fall 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.