THIRD MIDTERM MATH 18.022, MIT, AUTUMN 10

You -	1 have 50 minutes. This test is closed book, closed notes, no calculators.		
	Name:		
	Signature:		
	Recitation Time:		
	There are 5 problems, and the total number of points is 100. Show all your work. Please make your work as clear and easy to follow as possible.		

Problem	Points	Score
1	20	
2	20	180
3	20	1
4	20	
5	20	
Total	100	

1. (20pts) For what values of λ does the function $f \colon \mathbb{R}^3 \longrightarrow \mathbb{R}$, $f(x,y,z) = \lambda x^2 - \lambda xy + y^2 + \lambda z^2,$ have a non-degenerate local minimum at (0,0,0)?

2. (20pts) Let $f: \mathbb{R}^3 \longrightarrow \mathbb{R}$ be the function $f(x, y, z) = x^2 - y^2 + z^2$. (i) Show that f has a global maximum on the ellipsoid $2x^2 + 3y^2 + z^2 = 6$.

(ii) Find this maximum.

- 3. (20pts)
- (i) Switch the order of integration in the integral

$$\int_0^3 \int_{x^2}^9 x e^{-y^2} \, \mathrm{d}y \, \mathrm{d}x.$$

(ii) Evaluate this integral.

4. (20pts) Let W be the region inside the sphere $x^2 + y^2 + z^2 = 1$ and inside the cone $z^2 = x^2 + y^2$. Set up an integral to calculate the integral of the function yz over W

and calculate this integral.

5. (20pts) Let D be the region in the first quadrant bounded by the curves $x^2-y^2=1$, $x^2-y^2=4$, xy=1 and xy=3. (i) Find $\mathrm{d} u\,\mathrm{d} v$ in terms of $\mathrm{d} x\,\mathrm{d} y$, where $u=x^2-y^2$ and v=xy.

(ii) Evaluate the integral

$$\iint_D (x^4 - y^4) \, \mathrm{d}x \, \mathrm{d}y.$$

MIT OpenCourseWare http://ocw.mit.edu

18.022 Calculus of Several Variables Fall 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.