1. VECTORS IN R? AND R3

Definition 1.1. A vector v € R? is a 3-tuple of real numbers (vi, vy, v3).

Hopefully the reader can well imagine the definition of a vector in
R2.
Example 1.2. (1,1,0) and (v/2,7,1/e) are vectors in R>.
Definition 1.3. The zero vector in R®, denoted 6, 15 the wvector
(0,0,0). If U = (v1,v2,v3) and W = (wy,ws,ws3) are two vectors in
R3, the sum of ¥ and W, denoted T+ 0, is the vector (vy + wy, vy +
W, V3 + W3).

If U = (vi,v9,v3) € R3 is a vector and X € R is a scalar, the scalar
product of A\ and v, denoted \ - U, is the vector (Avy, A\va, Avg).

Example 1.4. If ¥ = (2,-3,1) and @ = (1,-5,3) then v + w0 =
(3,-8,4). If A= —3 then A -7 = (—6,9,—3).

Lemma 1.5. If A and u are scalars and i@, ¥ and @ are vectors in R?,

then
(1) 0+ =0.
(2) 4+ (T4 W) = (4 + V) + .
B)u+v=v+1u
(4) A (- 0) = (M) - 0.
B) A+p) - 0=X-T+pu-v.
6) A (U+T)=A-U+ 0.
Proof. We check (3). If @ = (uy,us,u3) and ¥ = (vy,v9,v3), then

’J—i‘ﬁ: U1+01,UQ+’U2,U3+113)

(
= (v1 + w1, vy + ug, V3 + u3z)
=7+ U. O
We can interpret vector addition and scalar multiplication geometri-
cally. We can think of a vector as representing a displacement from
the origin. Geometrically a vector ' has a magnitude (or length)
U] = (v? + vZ + v2)'/? and every non-zero vector has a direction

=

u =

|

Multiplying by a scalar leaves the direction unchanged and rescales the
magnitude. To add two vectors ¢ and , think of transporting the tail
of w to the endpoint of ¥. The sum of ¢ and  is the vector whose tail

is the tail of the transported vector.
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One way to think of this is in terms of directed line segments. Note
that given a point P and a vector v we can add ¢ to P to get another
point Q. If P = (p1,p2,ps3) and ¥ = (v, v, v3) then

Q = P+ 7= (p1 + v1,p2 + Vo, p3 + v3).

If @ = (q1,92,93), then there is a unique vector P—Cj, such that Q =
P + ¥, namely

—
PQ = (q1 —p1,q2 — P2,43 — P3)-
Lemma 1.6. Let P, Q and R be three points in R3.
— — =
Then PQ + QR = PR.

—

Proof. Let us consider the result of adding P—Cj + QR to P,

P+ (PQ+QR) = (P+ PQ) + QR
=Q+QR
= R.

On the other hand, there is at most one vector v such that when we
— —_—  — —
add it P we get R, namely the vector PR. So P(Q) + QR = PR. 0J

Note that expresses the geometrically obvious statement that
if one goes from P to () and then from @) to R, this is the same as
going from P to R.

Vectors arise quite naturally in nature. We can use vectors to rep-
resent forces; every force has both a magnitude and a direction. The
combined effect of two forces is represented by the vector sum. Sim-
ilarly we can use vectors to measure both velocity and acceleration.
The equation

—

F =ma,

is the vector form of Newton’s famous equation.
Note that R? comes with three standard unit vectors

i=(1,0,0) j=(0,1,00 and  k=(0,0,1),

which are called the standard basis. Any vector can be written uniquely
as a linear combination of these vectors,

U = (v1,v2,v3) = V12 + V2] + V3k.

We can use vectors to parametrise lines in R3. Suppose we are given
two different points P and Q of R3. Then there is a unique line [
containing P and (). Suppose that R = (z,y, z) is a general point of
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the line. Note that the vector PR is parallel to the vector P—Cj7 so that
— —
PR is a scalar multiple of PQ). Algebraically,
— —
PR =1tPQ,
for some scalar t € R. If P = (py, p2, p3) and @ = (q1, q2, g3), then
(T —p1,y — P2, 2 — p3) = t(qn — p1, G2 — 2,43 — p3) = t(v1, va, v3),
where (vq,v2,v3) = (1 — p1,92 — P2, g3 — p3). We can always rewrite
this as,
(,y,2) = (p1,p2,p3) + t(v1,v2,03) = (p1 + tv1, p2 + tva, p3 + tvs).

Writing these equations out in coordinates, we get

r=p +tog Y = pa + tug and z = p3 + tus.
Example 1.7. If P = (1,-2,3) and Q = (1,0, —1), then v = (0,2, —4)
and a general point of the line containing P and Q) is given parametri-
cally by

(x,y,2) = (1,-2,3) + (0,2, —4) = (1, -2+ 2t,3 — 4t).
Example 1.8. Where do the two lines l; and [y
(x,y,2) = (1,—2+2t,3—4t) and (x,y,2) = (2t —1,—3+1,3t),

intersect?
We are looking for a point (x,y, z) common to both lines. So we have

(1, -2 4 25,3 — 4s) = (2t — 1, =3 + £, 3t).

Looking at the first component, we must have t = 1. Looking at the
second component, we must have —2 + 2s = —2, so that s = 0. By
inspection, the third component comes out equal to 3 in both cases. So
the lines intersect at the point (1,—2,3).

Example 1.9. Where does the line
(r,y,2)=(1—1t,2—3t,2t+1)
intersect the plane
20 — 3y + 2z =67
We must have
2(1—t)—3(2—3t)+ (2t +1) =6.
Solving for t we get
9t — 3 =6,
so that t = 1. The line intersects the plane at the point

(x,y,2) = (0,—-1,3).
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Example 1.10. A cycloid is the path traced in the plane, by a point
on the circumference of a circle as the circle rolls along the ground.

Let’s find the parametric form of a cycloid. Let’s suppose that the
circle has radius a, the circle rolls along the x-axis and the point is at
the origin at time t = 0. We suppose that the cylinder rotates through
an angle of t radians in time t. So the circumference travels a distance
of at. It follows that the centre of the circle at time t is at the point
P = (at,a). Call the point on the circumference Q = (z,y) and let O
be the centre of coordinates. We have

—_— = —
(2,y) = OQ = OP + PG.
Now relative to P, the point () just goes around a circle of radius a.

Note that the circle rotates backwards and at time t = 0, the angle
37/2. So we have

@ = (acos(37/2 — t),asin(37/2 —t)) = (—asint, —acost)
Putting all of this together, we have

(x,y) = (at — asint,a — acost).
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