11. HIGHER DERIVATIVES

We first record a very useful:

Theorem 11.1. Let A C R™ be an open subset. Let f: A — R™ and
g: A — R™ be two functions and suppose that P € A. Let A € A be

a scalar.
If f and g are differentiable at P, then

(1) f+g is differentiable at P and D(f+g)(P) = Df(P)+ Dg(P).
(2) X f is differentiable at P and D(Af)(P) = AD(f)(P).

Now suppose that m = 1.

(3) fg is differentiable at P and D(fg)(P) = D(f)(P)g(P)+f(P)D(g)(P).
(4) If g(P) # 0, then fg is differentiable at P and

D(f)(P)g(P) — f(P)D(g)(P)
9*(P) '

If the partial derivatives of f and ¢ exist and are continuous, then
follows from the well-known single variable case. One can prove
the general case of , by hand (basically lots of €’s and §’s). How-
ever, perhaps the best way to prove is to use the chain rule,
proved in the next section.

What about higher derivatives?

D(f/9)(P) =

Definition 11.2. Let A C R" be an open set and let f: A — R be a
function. The kth order partial derivative of f, with respect to

the variables x;,, x;,, ...x; 1is the iterated derivative
o f 0 0 o ,of
P) = . NP,
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We will also use the notation fmikxikil,“331,23“1 (P).

Example 11.3. Let f: R? — R be the function f(x,t) = e *cosz.
Then

0

8x(8x(
0,
- Oz

= —e ®cosa.

e " cosw))

fue(z,t) =

“ sin z)
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On the other hand,

o 0
fut(x,t) = %(a(e_“t cos T))
= %(—ae‘“t COS T)

= ae “sinz.

Stmilarly,

furlt) = o (2
0
= E(_

= ae *sinz.

—at

e " cosx))

e "sinx)

Note that
fi(x,t) = —ae " cos .
It follows that f(x,t) is a solution to the Heat equation:
o1
ox? Ot
Definition 11.4. Let A C R" be an open subset and let f: A — R™
be a function. We say that f is of class C* if all kth partial derivatives
exist and are continuous.
We say that f is of class C* (aka smooth) if f is of class C* for
all k.

In lecture 10 we saw that if f is C!, then it is differentiable.

Theorem 11.5. Let A C R" be an open subset and let f: A — R™
be a function.
If f is C2, then
*f  0°f
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forall1 <1,7 <n.

The proof uses the Mean Value Theorem.
Suppose we are given A C R an open subset and a function f: A —
R of class C'. The objective is to find a solution to the equation

f(z) =0.
Newton’s method proceeds as follows. Start with some zy € A. The
best linear approximation to f(x) in a neighbourhood of xy is given by

f(@o) + f'(zo)(z — x0).
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If f'(xo) # 0, then the linear equation
f(xo) + f'(wo)(z — 20) = 0,

has the unique solution,

. f (o)
(o)
Now just keep going (assuming that f’(z;) is never zero),

f(330)

r1 =2

Tl = Ty —

Claim 11.6. Suppose that ro, = lim, .o, x, exists and f'(xs) =# 0.
Then f(rs) = 0.

Proof of (11.6)). Indeed, we have

Tp = Tp_1 — S @) :
" " f/(xn—1>
Take the limit as n goes to oo of both sides:
f(7)
Too = Too — )
(7o)

we we used the fact that f and f’ are continuous and f’(z,,) # 0. But
then

f(2e0) = 0,

as claimed. O

Suppose that A C R™ is open and f: A — R™ is a function. Sup-
pose that f is C' (that is, suppose each of the coordinate functions

f17 f2, ey fn 18 Cl)
The objective is to find a solution to the equation
F(P)=0.
Start with any point Fy € A. The best linear approximation to f at
Py is given by

f(Py) + Df(Py)PE,.
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Assume that Df(FP,) is an invertible matrix, that is, assume that
det Df(Py) # 0. Then the inverse matrix Df(FPy)~! exists and the
unique solution to the linear equation

e —
f(Po) + Df(Po)PPO — 0,
is given by
Py =Py — Df(Py)"" f(Ry).
Notice that matrix multiplication is not commutative, so that there is
a difference between D f(Py)~'f(P) and f(Py)Df(Py)~*. If possible,
we get a sequence of solutions,
Py =Py — Df(R) ' f(Py)
Py= P — Df(P)" f(Py)

Pn = Ip-1— Df(Pn—l)_lf(Pn—l)-

Suppose that the limit Py, = lim,_., P, exists and that D f(P,) is
invertible. As before, if we take the limit of both sides, this implies
that

f(Pyx) =0.
Let us try a concrete example.

Example 11.7. Solve

2P =1

I

First we write down an appropriate function, f: R? — R2, given

by f(z,y) = (2? + y* — 1,y* — x3). Then we are looking for a point P
such that

f(P) = (0,0).

pre)= (5. 3.

Then

The determinant of this matrix is
4oy + 6%y = 2xy(2 + 32).
Now if we are given a 2 x 2 matrix

(€ o)
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then we may write down the inverse by hand,

1 d —=b
ad —bc \—c a )

So .
_ 2y —2y
Df(P) ' = ————
10 = g (o o)
So,

_ 1 2y —2y\ (2 +y* -1

Df(P)'f(P)= ————
IO = ey v 30 (3932 2:'«“) ( yt -
B 1 222y — 2y + 223y
T 2xy(2 + 3z) \&t + 327y — 32* 4 2zy°

One nice thing about this method is that it is quite easy to implement
on a computer. Here is what happens if we start with (xg, yo) = (5, 2),

(o, 50) = (5.00000000000000, 2.00000000000000)
(z1,11) = (3.24705882352941, —0.617647058823529)
(z2,12) = (2.09875150983980, 1.37996311951634)
(z3,y5) = (1.37227480405610, 0.561220968705054)
(z4,y1) = (0.959201654346683, 0.503839504009063)
(z5,y5) = (0.787655203525685, 0.657830227357845)
(

T, Ys) = (0.755918792660404, 0.655438554539110),
and if we start with (zo,y0) = (5,5),

(20, yo) = (5.00000000000000, 5.00000000000000)
(x1,11) = (3.24705882352941, 1.85294117647059)
(x2,y2) = (2.09875150983980, 0.363541705259258)
(x3,y3) = (1.37227480405610, —0.306989760884339)
(x4,y4) = (0.959201654346683, —0.561589294711320)
(x5, y5) = (0.787655203525685, —0.644964218428458)

(x6,y6) = (0.755918792660404, —0.655519172668858).

One can sketch the two curves and check that these give reasonable

solutions. One can also check that (zg,ys) lie close to the two given

curves, by computing 22 + y2 — 1 and y2 — x}.
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