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11. Higher derivatives 

We first record a very useful: 

Theorem 11.1. Let A ⊂ Rn be an open subset. Let f : A −→ Rm and 
g : A −→ Rm be two functions and suppose that P ∈ A. Let λ ∈ A be 
a scalar. 

If f and g are differentiable at P , then 

(1) f +g is differentiable at P and D(f +g)(P ) = Df(P )+Dg(P ). 
(2) λ f is differentiable at P and D(λf)(P ) = λD(f)(P ).· 

Now suppose that m = 1. 

(3) fg is differentiable at P and D(fg)(P ) = D(f)(P )g(P )+f(P )D(g)(P ). 
(4) If g(P ) = 0, then fg is differentiable at P and 

D(f/g)(P ) = 
D(f)(P )g(P ) − f(P )D(g)(P ) 

. 
g2(P ) 

If the partial derivatives of f and g exist and are continuous, then 
(11.1) follows from the well-known single variable case. One can prove 
the general case of (11.1), by hand (basically lots of �’s and δ’s). How­
ever, perhaps the best way to prove (11.1) is to use the chain rule, 
proved in the next section. 

What about higher derivatives? 

Definition 11.2. Let A ⊂ Rn be an open set and let f : A −→ R be a 
function. The kth order partial derivative of f , with respect to 
the variables xi1 , xi2 , . . . xik is the iterated derivative 

∂kf ∂ ∂ ∂ ∂f 
(P ) = ( (. . . ( ) . . . ))(P ). 

∂xik ∂xik−1 . . . ∂xi2 ∂xi1 ∂xik ∂xik−1 ∂xi2 ∂xi1 

We will also use the notation fxik xik−1 ...xi2 xi1 
(P ). 

Example 11.3. Let f : R2 −→ R be the function f(x, t) = e−at cos x. 
Then 

∂ ∂ 
fxx(x, t) = ( (e−at cos x))

∂x ∂x
∂ 

= (−e−at sin x)
∂x

= −e−at cos x. 
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On the other hand, 

∂ ∂ 
fxt(x, t) = ( (e−at cos x))

∂x ∂t
∂ 

= (−ae−at cos x)
∂x

= ae−at sin x. 

Similarly, 

∂ ∂ 
ftx(x, t) = ( (e−at cos x))

∂t ∂x
∂ 

= (−e−at sin x)
∂t

= ae−at sin x. 

Note that 
ft(x, t) = −ae−at cos x. 

It follows that f(x, t) is a solution to the Heat equation: 

∂2f ∂f 
a = . 
∂x2 ∂t 

Definition 11.4. Let A ⊂ Rn be an open subset and let f : A −→ Rm 

be a function. We say that f is of class Ck if all kth partial derivatives 
exist and are continuous. 

We say that f is of class C∞ (aka smooth) if f is of class Ck for 
all k. 

In lecture 10 we saw that if f is C1, then it is differentiable. 

Theorem 11.5. Let A ⊂ Rn be an open subset and let f : A −→ Rm 

be a function. 
If f is C2, then 

∂2f ∂2f 
= ,

∂xi∂xj ∂xj ∂xi 

for all 1 ≤ i, j ≤ n. 

The proof uses the Mean Value Theorem. 
Suppose we are given A ⊂ R an open subset and a function f : A −→ 

R of class C1 . The objective is to find a solution to the equation 

f(x) = 0. 

Newton’s method proceeds as follows. Start with some x0 ∈ A. The 
best linear approximation to f(x) in a neighbourhood of x0 is given by 

f(x0) + f �(x0)(x − x0). 
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�If f �(x0) = 0, then the linear equation 

f(x0) + f �(x0)(x − x0) = 0, 

has the unique solution, 

f(x0) 
x1 = x0 − . 

f �(x0) 

Now just keep going (assuming that f �(xi) is never zero), 

f(x0) 
x1 = x0 − 

f �(x0) 
f(x1) 

x2 = x1 − 
f �(x1) 

. . . .. = . 

xn = xn−1 − 
f

f
�
(

(

x

x
n

n

−

−

1

1

)

) 
. 

Claim 11.6. Suppose that x∞ = limn→∞ xn exists and f �(x∞) == 0� . 
Then f(x∞) = 0. 

Proof of (11.6). Indeed, we have 

xn = xn−1 − 
f

f
�
(

(

x

x
n

n

−

−

1

1

)

) 
. 

Take the limit as n goes to ∞ of both sides: 

f(x∞) 
x = x ,∞ ∞ − 

f �(x∞)

we we used the fact that f and f � are continuous and f �(x∞) = 0. But �
then 

f(x∞) = 0, 

as claimed. � 

Suppose that A ⊂ Rn is open and f : A −→ Rn is a function. Sup­
pose that f is C1 (that is, suppose each of the coordinate functions 
f1, f2, . . . , fn is C1). 

The objective is to find a solution to the equation 

f(P ) = �0. 

Start with any point P0 ∈ A. The best linear approximation to f at 
P0 is given by 

f(P0) + Df(P0)
−−→
PP0. 
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� � 

Assume that Df(P0) is an invertible matrix, that is, assume that 
det Df(P0) �= 0. Then the inverse matrix Df(P0)

−1 exists and the 
unique solution to the linear equation 

f(P0) + Df(P0)
−−→
PP0 = �0, 

is given by 
P1 = P0 − Df(P0)

−1f(P0). 

Notice that matrix multiplication is not commutative, so that there is 
a difference between Df(P0)

−1f(P0) and f(P0)Df(P0)
−1 . If possible, 

we get a sequence of solutions, 

P1 = P0 − Df(P0)
−1f(P0) 

P2 = P1 − Df(P1)
−1f(P1) 

. . . .. = . 

Pn = Pn−1 − Df(Pn−1)
−1f(Pn−1). 

Suppose that the limit P∞ = limn→∞ Pn exists and that Df(P∞) is 
invertible. As before, if we take the limit of both sides, this implies 
that 

f(P∞) = �0. 

Let us try a concrete example. 

Example 11.7. Solve 

x 2 + y 2 = 1 
2 3 y = x . 

First we write down an appropriate function, f : R2 −→ R2, given 
by f(x, y) = (x2 + y2 − 1, y2 − x3). Then we are looking for a point P 
such that 

f(P ) = (0, 0). 

Then � �

2x 2y


Df(P ) = 2 . −3x 2y 

The determinant of this matrix is 

4xy + 6x 2 y = 2xy(2 + 3x). 

Now if we are given a 2 × 2 matrix 

a b 
c d

, 
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� � 

� � 

then we may write down the inverse by hand, 

1 d −b 
. 

ad − bc −c a 

So � � 
1 2y −2y

Df(P )−1 =
2xy(2 + 3x) 3x2 2x 

So, � � � � 

Df(P )−1f(P ) = 
1 2y 

2 
−2y x2 + 

2 
y2 −

3 
1 

2xy(2 + 3x) 3x 2x y − x

1 2x2y − 2y + 2x3y
= 

2xy(2 + 3x) x4 + 3x2y2 − 3x2 + 2xy2 

One nice thing about this method is that it is quite easy to implement 
on a computer. Here is what happens if we start with (x0, y0) = (5, 2), 

(x0, y0) = (5.00000000000000, 2.00000000000000) 

(x1, y1) = (3.24705882352941, −0.617647058823529) 

(x2, y2) = (2.09875150983980, 1.37996311951634) 

(x3, y3) = (1.37227480405610, 0.561220968705054) 

(x4, y4) = (0.959201654346683, 0.503839504009063) 

(x5, y5) = (0.787655203525685, 0.657830227357845) 

(x6, y6) = (0.755918792660404, 0.655438554539110), 

and if we start with (x0, y0) = (5, 5), 

(x0, y0) = (5.00000000000000, 5.00000000000000) 

(x1, y1) = (3.24705882352941, 1.85294117647059) 

(x2, y2) = (2.09875150983980, 0.363541705259258) 

(x3, y3) = (1.37227480405610, −0.306989760884339) 

(x4, y4) = (0.959201654346683, −0.561589294711320) 

(x5, y5) = (0.787655203525685, −0.644964218428458) 

(x6, y6) = (0.755918792660404, −0.655519172668858). 

One can sketch the two curves and check that these give reasonable 
solutions. One can also check that (x6, y6) lie close to the two given 
curves, by computing x6

2 + y6
2 − 1 and y6

2 − x6
3 . 
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