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12. Chain rule 

Theorem 12.1 (Chain Rule). Let U ⊂ Rn and let V ⊂ Rm be two 
open subsets. Let f : U −→ V and g : V −→ Rp be two functions. 
If f is differentiable at P and g is differentiable at Q = f(P ), then 
g ◦ f : U −→ Rp is differentiable at P , with derivative: 

D(g f)(P ) = (D(g)(Q))(D(f)(P )).◦ 

It is interesting to untwist this result in specific cases. Suppose we 
are given 

f : R −→ R2 and g : R2 −→ R. 
So f(x) = (f1(x), f2(x)) and w = g(y, z). Then 

df1 (P )	 ∂g ∂g 
dxDf(P ) = df2 

and Dg(Q) = ( (Q), (Q)). 
(P )	 ∂y ∂z dx 

So 
d(g f) ∂g df1 ∂g df2◦ 

= D(g f)(P ) = Dg(Q)Df(P ) = (Q) (P )+ (Q) (P ). 
dx 

◦	
∂y dx ∂z dx 

Example 12.2. Suppose that f(x) = (x2, x3) and g(y, z) = yz. If we 
apply the chain rule, we get 

D(g f)(x) = z(2x) + y(3x 2) = 5x 4 .◦ 

On the other hand (g f)(x) = x5, and of course ◦ 

dx5
4= 5x . 

dx 
Now suppose that 

f : R2 −→ R2 and g : R2 −→ R 

So f(x, y) = (f1(x, y), f2(x, y)) and w = g(u, v). Then 
∂f1 (P )	 ∂f2 (P ) ∂g ∂g 
∂x	 ∂x Df(P ) = ∂f2 ∂f2 

and Dg(Q) = ( (Q), (Q)). 
(P ) (P )	 ∂u ∂v ∂x	 ∂x 

In this case 

D(g f) = ( 
∂(g ◦ f) 

,
∂(g ◦ f)

)◦	
∂x ∂y 

∂g ∂f1 ∂g ∂f2 ∂g ∂f1 ∂g ∂f2
= ( (Q) (P ) + (Q) (P ), (Q) (P ) + (Q) (P )). 

∂u ∂x ∂v ∂x ∂u ∂y ∂v ∂y 
∂g ∂u ∂g ∂v ∂g ∂u ∂g ∂v 

= ( (Q) (P ) + (Q) (P ), (Q) (P ) + (Q) (P ))
∂u ∂x ∂v ∂x ∂u ∂y ∂v ∂y 
∂g ∂u ∂g ∂v ∂g ∂u ∂g ∂v 

= ( + , + ),
∂u ∂x ∂v ∂x ∂u ∂y ∂v ∂y 
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since u = f1(x, y) and v = f2(x, y). Notice that in the last line we were 
a bit sloppy and dropped P and Q. 

If we split this vector equation into its components we get 

∂(g f) ∂g ∂f1 ∂g ∂f2◦ 
= (Q) (P ) + (Q) (P )

∂x ∂u ∂x ∂v ∂x 
∂(g f) ∂g ∂f1 ∂g ∂f2◦ 

= (Q) (P ) + (Q) (P ). 
∂y ∂u ∂y ∂v ∂y 

Again, we could replace f1 by u and f2 by v in these equations, and 
maybe even drop P and Q. 

Example 12.3. Suppose that f(x, y) = (cos(xy), ex−y) and g(u, v) = 
u2 sin v. If we apply the chain rule, we get 

D(g ◦ f)(x) = (2u sin v(−y sin xy) + u 2 cos v(e x−y), −2u sin vx sin xy − u 2 cos ve x−y 

= (2 cos(xy) sin(e x−y)(−y sin xy) + cos2(xy) cos(e x−y)e x−y, . . . ). 

In general, the (i, k) entry of D(g f)(P ), that is ◦ 

∂(g f)i◦ 
∂xk 

is given by the dot product of the ith row of Dg(Q) and the kth column 
of Df(P ), 

m
∂(g ◦ f)i 

= 
� ∂gi 

(Q) 
∂fj 

(P ). 
∂xk j=1 

∂yj ∂xi 

If z = (g f)(P ), then we get ◦ 
m

∂zi 
� ∂zi ∂yj

= (Q) (P ). 
∂xk j=1 

∂yj ∂xi 

We can use the chain rule to prove some of the simple rules for 
derivatives. Suppose that we have 

f : Rn −→ Rm and g : Rn −→ Rm . 

Suppose that f and g are differentiable at P . What about f + g? 
Well there is a function 

a : R2m ,−→ Rm 

which sends (�u,�v) ∈ Rm × Rm to the sum �u + �v. In coordinates 
(u1, u2, . . . , um, v1, v2, . . . , vm), 

a(u1, u2, . . . , um, v1, v2, . . . , vm) = (u1 + v1, u2 + v2, . . . , um + vm). 
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Now a is differentiable (it is a polynomial, linear even). There is func­
tion 

h : Rn −→ R2m , 

which sends Q to (f(Q), g(Q)). The composition a ◦ h : Rn −→ Rm is 
the function we want to differentiate, it sends P to f(P ) + g(P ). The 
chain rule says that that the function is differentiable at P and 

D(f + g)(P ) = Df(P ) + Dg(P ).


Now suppose that m = 1. Instead of a, consider the function


m : R2 −→ R, 

given by m(x, y) = xy. Then m is differentiable, with derivative 

Dm(x, y) = (y, x). 

So the chain rule says the composition of h and m, namely the func­
tion which sends P to the product f(P )g(P ) is differentiable and the 
derivative satisfies the usual rule 

D(fg)(P ) = g(P )D(f)(P ) + f(P )D(g)(P ). 

Here is another example of the chain rule, suppose 

x = r cos θ 

y = r sin θ. 

Then 
∂f	 ∂f ∂x ∂f ∂y 

= + 
∂r	 ∂x ∂r ∂y ∂r 

∂f ∂f 
= cos θ + sin θ. 

∂x ∂y 

Similarly, 

∂f	 ∂f ∂x ∂f ∂y 
= + 

∂θ ∂x ∂θ ∂y ∂θ 
∂f ∂f 

= −
∂x 

r sin θ + 
∂y 

r cos θ. 

We can rewrite this as � � �	 � � � 
∂	 ∂ cos θ sin θ
∂r	 ∂x 
∂ =	 ∂−r sin θ r cos θ
∂θ	 ∂y 

Now the determinant of 

cos θ sin θ 
−r sin θ r cos θ 
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is 

r(cos2 θ + sin2 θ) = r. 

So if r = 0, then we can invert the matrix above and we get � � � � � � �
∂ ∂1 r cos θ − sin θ∂x ∂r 
∂ = 

r r sin θ cos θ ∂ 
∂y ∂θ 

We now turn to a proof of the chain rule. We will need: 

Lemma 12.4. Let A ⊂ Rn be an open subset and let f : A −→ Rm be 
a function. 

If f is differentiable at P , then there is a constant M ≥ 0 and δ > 0 
such that if �

−→
PQ� < δ, then 

�f(Q) − f(P )� < M�
−→
PQ�. 

Proof. As f is differentiable at P , there is a constant δ > 0 such that 
if �
−→
PQ� < δ, then 

�f(Q) − f(P ) − Df(P )
−→
PQ� 

�
−→ < 1. 
PQ� 

Hence 

�f(Q) − f(P ) − Df(P )
−→

PQ�.PQ� < �
−→

But then 

�f(Q) − f(P )� = �f(Q) − f(P ) − Df(P )
−→

PQ�PQ + Df(P )
−→

PQ� + �Df(P )
−→
PQ�≤ �f(Q) − f(P ) − Df(P )

−→

PQ� + K�
−→
PQ�≤ �

−→

= M�
−→
PQ�, 

where M = 1 + K. � 

Proof of (12.1). Let’s fix some notation. We want the derivative at P . 
Let Q = f(P ). Let P � be a point in U (which we imagine is close to 
P ). Finally, let Q� = f(P �) (so if P � is close to P , then we expect Q� 

to be close to Q). 
The trick is to carefully define an auxiliary function G : V −→ Rp, ⎧ ⎨g(Q�)−g(Q)−Dg(Q)(

−−→

�
−−→

QQ�) if Q� = Q
G(Q�) = ⎩ 

QQ�� 
�

�0 if Q� = Q. 
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Then G is continuous at Q = f(P ), as g is differentiable at Q. Now, 

(g f)(P �) − (g PP �)f)(P ) − Dg(Q)Df(P )(
−−

◦ ◦ 

�
−−
P P �� 

f(P �) − f(P ) − Df( P P �)P )(
−−→

= Dg(Q) + G(f(P �))
�f(P �) − f(P )� 

�
−−
PP �� �

−−→ . 
PP �� 

As P � approaches P , note that 

PP �)f(P �) − f(P ) − Df(P )(
−−→

, 
�
−−
PP �� 

and G(P �) both approach zero and 

�f(P �) − f(P )� ≤ M. 
�
−−
PP �� 

So then 

(g ◦ f)(P �) − (g ◦ PP �) 
, 

f)(P ) − Dg(Q)Df(P )(
−−→

�
−−
PP �� 

approaches zero as well, which is what we want. � 
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