
16. Moving frames 

Definition 16.1. We say a parametrised differentiable curve �r : I −→ 
Rn is regular if �r�(t) = 0 � (the speed is never zero). 

We say that �r(t) is smooth if �r(t) is C∞. 

Given a regular smooth parametrised differentiable curve �r : I −→ 
R3, we can parametrise by arclength, in which case we get can write 
down the unit tangent vector 

T� = 
d�r 

(s). 
ds

The curvature κ(s) is defined as the magnitude of 

dT�
(s). 

ds 

If the curvature is nowhere zero, then we define the normal vector 
N� (s) as the unit vector pointing in the direction of the derivative of 
the tangent vector: 

dT�
(s) = κ(s)N� (s). 

ds 

We have already seen that T�(s) and N� (s) are orthogonal. 

Definition 16.2. 

B� (s) = T�(s) × N� (s). 

is called the binormal vector. 

The three vectors T�(s), N� (s), and B� (s) are unit vectors and pairwise 
orthogonal, that is, these vectors are an orthonormal basis of R3 . Notice 
that T�(s), N� (s), and B� (s) are a right handed set. 

We call these vectors a moving frame or the Frenet-Serret frame. 
Now 

dB�
(s) × B� (s) = 0,

ds 
as 

�B� (s) B� (s)� = 1.· 

It follows that 

dB�
(s),

ds 
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lies in the plane spanned by T�(s) and N� (s).


dB�
(s) T�(s) = 

d(T� × N� )
(s) T�(s)

ds 
· � ds 

· � 
dT� dN�

= 
ds 

(s) × N� (s) + T�(s) × 
ds 

(s) · T�(s) 

= κ(s)(N� (s) × N� (s)) T�(s) + (T�(s) × N� (s)) T�(s)· · 

= 0 + (T�(s) × T�(s)) N� (s)· 
= 0. 

It follows that 
dB�

(s) and T�(s),
ds 

are orthogonal, and so 

dB�
(s) is parallel to N� (s). 

ds 

Definition 16.3. The torsion of the curve �r(s) is the unique scalar 
τ(s) such that 

dB�
(s) = −τ(s)N� (s). 

ds 

If we have a helix, the sign of the torsion distinguishes between a 
right handed helix and a left handed helix. The magnitude of the 
torsion measures how spread out the helix is (the curvature measures 
how tight the turns are). Now 

dN�
(s)

ds 

is orthogonal to N� (s), and so it is a linear combination of T�(s) and 
B� (s). In fact, 

dN�
(s) = 

d(B� × T�)
(s)

ds ds 
dB� dT�

= (s) × T�(s) + B� (s) × (s)
ds ds 

= −τ(s)N� (s) × T�(s) + κ(s)B� (s) × N� (s) 

= τ(s)B� (s) − κ(s)T�(s) 

= −κ(s)T�(s) + τ(s)B� (s). 
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Theorem 16.4 (Frenet Formulae). Let �r : I −→ R3 be a regular smooth 
parametrised curve. Then 

N� �(s)⎠ = 

⎞⎛⎝ 

⎛⎞⎛ 
0 κ(s) 0


⎞

T�(s)
T� �(s) ⎝
 ⎝
⎠
 ⎠
N� (s)
−κ(s) 0 τ(s) 

0 
.


B� �(s) B� (s)
−τ(s) 0


Of course, s represents the arclength parameter and primes denote 
derivatives with respect to s. Notice that the 3 × 3 matrix A appearing 
in (16.4) is skew-symmetric, that is At = −A. The way we have 
written the Frenet formulae, it appears that we have two 3 × 1 vectors; 
strictly speaking these are the rows of two 3 × 3 matrices. 

Theorem 16.5. Let I ⊂ R be an open interval and suppose we are 
given two smooth functions 

κ : I −→ R and τ : I −→ R, 

where κ(s) > 0 for all s ∈ I. 
Then there is a regular smooth curve �r : I −→ R3 parametrised by 

arclength with curvature κ(s) and torsion τ(s). Further, any two such 
curves are congruent, that is, they are the same up to translation and 
rotation. 

Remark 16.6. Uniqueness is one of the hwk problems. 

Let’s consider the example of the helix: 

Example 16.7. 
s s bs 

�r(s) = (a cos , a sin , ), 
c c c 

where 
c 2 = a 2 + b2 . 

Let’s assume that a > 0. By convention c > 0. Then 

T�(s) = 
1
(−a sin 

s
, a cos 

s
, b). 

c c c 
Hence 

dT s s a s s a 
(s) = 

−a 
(cos , sin , 0) = (− cos , − sin , 0) = N(s)

ds c2 c c c2 c c c2 

It follows that 

κ(s) = 
a 

and N� (s) = (− cos 
s
, − sin 

s
, 0). 

2c c c 
Finally,


B� (s) =

ı̂ ĵ k̂


a a s− sin s cos 
c c c c 

b 
c 

− cos 
3 

s − sin s 0 
c c 



It follows that 

B� (s) = ( 
b 

sin 
s
, − 

b 
cos 

s
, 
a 
) = 

1
(b sin 

s
, −b cos 

s
, a). 

c c c c c c c c 
Finally, note that 

dB� b s s b �
ds 

(s) = 
c2 

(cos 
c
, sin 

c
, 0) = −

c2 
N. 

Using this we can compute the torsion: 
b 

τ(s) = 
2 
. 

c

It is interesting to use the torsion and curvature to characterise var­
ious geometric properties of curves. Let’s say that a parametrised dif­
ferentiable curve �r : I −→ R3 is planar if there is a plane Π which 
contains the image of �r. 

Theorem 16.8. A regular smooth curve �r : I −→ R3 is planar if and 
only if the torsion is zero. 

Proof. We may assume that the curve passes through the origin. 
Suppose that �r is planar. Then the image of �r is contained in a 

plane Π. As the curve passes through the origin, Π contains the origin 
as well. Note that the unit tangent vector T�(s) and the unit normal 
vector N� (s) are contained in Π. It follows that B� (s) is a normal vector 
to the plane; as B� (s) is a unit vector, it must be constant. But then 

dB�
(s) = �0 = 0 N� (s),

ds 
so that the torsion is zero. 

Now suppose that the torsion is zero. Then 
dB 

(s) = 0 N� = �0,
ds 

so that B� (s) = B0, is a constant vector. Consider the function 

f(s) = �r(s) B� (s) = �r(s) B�0.· · 
Then 

df 
(s) = 

d(�r × B�0)
(s)

ds ds 
= T�(s).B�0 = 0. 

So f(s) is constant. It is zero when �r(a) = �0 (the curve passes through 
the origin) so that f(s) = 0. But then �r(s) is always orthogonal to a 
fixed vector, so that �r is contained in a plane, that is, C is planar. � 
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It is interesting to try to figure out how to characterise curves which 
are contained in spheres or cylinders. 
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