
19. Taylor Polynomials 

If f : A −→ Rm is a differentiable function, and we are given a point 
P ∈ A, one can use the derivative to write down the best linear ap­
proximation to f at P . It is natural to wonder if one can do better 
using quadratic, or even higher degree, polynomials. We start with the 
one dimensional case. 

Definition 19.1. Let I ⊂ R be an open interval and let f : I −→ R be 
a Ck-function. Given a point a ∈ I, let 

Pa,kf(x) = f(a) + f �(a)(x − a) + 
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Then Pa,kf(x) is the kth Taylor polynomial of f , centred at a. The 
remainder is the difference 

Ra,kf(x) = f(x) − Pa,kf(x). 

Note that we have chosen Pa,kf so that the first k derivatives of 
Pa,kf at a are precisely the same as those of f . In other words, the 
first k derivatives at a of the remainder are all zero. The remainder is 
a measure of how good the Taylor polynomial approximates f(x) and 
so it is very useful to estimate Ra,k(x). 

Theorem 19.2 (Taylor’s Theorem with remainder). Let I ⊂ R be an 
open interval and let f : I −→ R be a Ck+1-function. Let a and b be 
two points in I. 

Then there is a ξ between a and b, such that 

fk+1(ξ)
(b − a)k+1Ra,kf(b) = . 

(k + 1)!

Proof. If a = b then take ξ = a. The result is clear in this case. 
Otherwise if we put 

Ra,kf(b)
M = ,

(b − a)k+1 

then 
Ra,kf(b) = M(b − a)k+1 . 

We want to show that there is some ξ between a and b such that 

fk+1(ξ)
M = . 

(k + 1)! 
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If we let 

g(x) = Ra,k(x) − M(x − a)k+1 , 

then 

g k+1(x) = fk+1(x) − k!M. 

Then we are looking for ξ such that 

g k+1(ξ) = 0. 

Now the first k derivatives of g at a are all zero, 

g i(a) = 0 for 0 ≤ i ≤ k. 

By choice of M , 

g(b) = 0. 

So by the mean value theorem, applied to g(x), there is a ξ1 between 
a and b such that 

g�(ξ1) = 0. 

Again by the mean value theorem, applied to g�(x), there is a ξ2 between 
a and ξ1 such that 

g��(ξ2) = 0. 

Continuing in this way, by induction we may find ξi, 1 ≤ i ≤ k + 1 
between a and ξi−1 such that 

g i(ξi) = 0. 

Let ξ = ξk+1. � 
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Let’s try an easy example. Start with


f(x) = x 1/2


1

f �(x) =	 x−1/2 

2 
1 

f ��(x) = 
22 

x−3/2


3

f ���(x) = 

23 
x−5/2


1 3 5

f 4(x) = − · · 

x−7/2 

24 

1 3 5 7 
f 5(x) =	

· 
2

· 
5 

· 
x−9/2


1 3 5 7 9

f 6(x) = − · · · · 

x−11/2 

26 

fk(x) = (−1)k−1 (2k − 1)!! 
x−(2k−1)/2 

2k 

fk(9/4) = (−1)k−1 (2k − 1)!! 22k−1 

2k 32k−1 

(2k − 1)!!2k−1 

= (−1)k−1 

32k−1 
. 

Let’s write down the Taylor polynomial centred at a = 9/4. 

P9/4,5f(x) = f(9/4)+f �(9/4)(x−9/4)+f ��(9/4)/2(x−9/4)2+f ���(9/4)/6(x−9/4)3 

f 4(9/4)/24(x − 9/4)4 + f 5(9/4)/120(x − 9/4)5 . 

So, 

P9/4,5f(x) = 3/2 + 1/3(x − 9/4) − 1/33(x − 9/4)2 + 2/35(x − 9/4)3 

1 3 5 23 1 3 5 7 24 · · · 
(x − 9/4)4 + 

· · · · 
(x − 9/4)5 .− 

24 37	 120 39 ·	 · 
If we plug in x = 2, so that x −9/4 = −1/4 we get an approximation 

to f(2) = 
√

2. 

10997 
P9/4,3(2) = 3/2+1/3(−1/4)−1/33(1/4)2−2/35(1/4)3 = ≈ 1.41422 . . . . 

7776 
On the other hand, 

1 3 1 3 |R3(2, 9/4)| = 
4! 
· 

(ξ)−7/2(1/4)4 < 
4! 
· 

(1/2) = 1/16. 

In fact 

R3(2, 9/4) = 
10997 √

2 ≈ 4 × 10−6 .|	 | 
7776 

− 

3 



Definition 19.3. Let A ⊂ Rn be an open subset which is convex (if �a 
and �b belong to A, then so does every point on the line segment between 
them). Suppose that f : A −→ R is Ck . 

Given �a ∈ A, the kth Taylor polynomial of f centred at a is � ∂f � ∂2f 
P�a,kf(�x) = f(�a)+ 

∂xi 
(�a)(xi−ai)+1/2 

∂xi∂xj 
(�a)(xi−ai)(xj−aj )+. . . 

1≤i≤n 1≤i,j≤n 

1 � ∂kf 
+ 

k! ∂xi1 ∂xi2 . . . ∂xik 

(�a)(xi1 −ai1 )(xi2 −ai2 ) . . . (xik −aik ). 
1≤i1,i2,...,ik ≤n 

The remainder is the difference 

R�a,kf(�x) = f(�x) − P�a,kf(�x). 

Theorem 19.4. Let A ⊂ Rn be an open subset which is convex. Sup­

pose that f : A −→ R is Ck+1, and let �a and �b belong to A. 
Then there is a vector ξ� on the line segment between �a and �b such 

that 

R�a,k(�b) = 
1 � ∂k+1f 

(ξ�)(bi1 −ai1 )(bi2 −ai2 ) . . . (bik+1 −aik+1 ). (k + 1)! ∂xi1 ∂xi2 . . . ∂xik+11≤l1,l2,...,lk+1≤n 

Proof. As A is open and convex, we may find � > 0 so that the 
parametrised line 

�r : (−�, 1 + �) −→ Rn given by �r(t) = �a + t(�b − �a), 

is contained in A. Let 

g : (−�, 1 + �) −→ R, 

be the composition of �r(t) and f(�x). 

Claim 19.5. 
P0,kg(t) = P�a,kf(�r(t)). 

Proof of (19.5). This is just the chain rule; � ∂f 
g�(t) = 

∂xi 
(�r(t))(bi − ai)


1≤i≤n
� ∂2f 
g��(t) = 

∂xi∂xj 
(�r(t))(bi − ai)(bj − aj ) 

1≤i≤j≤n 

and so on. � 

So the result follows by the one variable result. � 
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We can write out the first few terms of the Taylor series of f and get 
something interesting. Let �h = �x − �a. Then � ∂f � ∂2f 

P�a,2f(x) = f(�a) + (�a)hi + 1/2 (�a)hihj . 
1≤i≤n 

∂xi 1≤i<j≤n 
∂xi∂xj 

The middle term is the same as multiplying the row vector formed by 
the gradient of f , 

∂f ∂f ∂f �f(�a) = ( (�a), (�a), . . . (�a)),
∂x1 ∂x2 ∂xn 

and the column vector given by �h. The last term is the same as mul­
tiplying the matrix with entries 

∂2f 
(�a),

∂xi∂xj 

on the left by �h and on the right by the column vector given by �h and 
dividing by 2. 

The matrix 
∂2f 

Hf(�a) = ( (�a)),
∂xi∂xj 

is called the Hessian of f(�x). 
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