19. TAYLOR POLYNOMIALS

If f: A— R™ is a differentiable function, and we are given a point
P € A, one can use the derivative to write down the best linear ap-
proximation to f at P. It is natural to wonder if one can do better
using quadratic, or even higher degree, polynomials. We start with the
one dimensional case.

Definition 19.1. Let I C R be an open interval and let f: I — R be
a C*-function. Given a point a € I, let

_ / f"(a) s 1"(a) 3 fk(a) k
Paif () = fla) + F@)e = a) + 52—+ a1 e )

Then P, f(x) is the kth Taylor polynomial of f, centred at a. The
remainder is the difference

Rorf(z) = f(x) — Porf(m).

Note that we have chosen P, f so that the first k derivatives of
P, 1f at a are precisely the same as those of f. In other words, the
first k£ derivatives at a of the remainder are all zero. The remainder is
a measure of how good the Taylor polynomial approximates f(z) and
so it is very useful to estimate R, x(z).

Theorem 19.2 (Taylor’s Theorem with remainder). Let I C R be an
open interval and let f: I — R be a C**'-function. Let a and b be
two points in I.

Then there is a & between a and b, such that

k+1
Roxf(b) = {ki(f)), (b—a)tt,

Proof. If a = b then take & = a. The result is clear in this case.
Otherwise if we put

o Ra,kf(b)
R
then

Raxf(b) = M(b— )<+,

We want to show that there is some & between a and b such that
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If we let
9(x) = Rop(x) = M(z — a)**",
then
g (x) = [ () — BIM.

Then we are looking for £ such that

g€ = 0.

Now the first k£ derivatives of g at a are all zero,
g'(a) =0 for 0<i<k.
By choice of M,
g(b) = 0.

So by the mean value theorem, applied to g(z), there is a & between
a and b such that

gl(fl) = 0.

Again by the mean value theorem, applied to ¢’(x), there is a & between
a and & such that

9”(52) = 0.

Continuing in this way, by induction we may find &, 1 < i < k+ 1
between a and &;_; such that

gi<€i) =0.

Let § = k1. 0



Let’s try an easy example. Start with

f(w) = a2
1
f(x) = 590_1/2
1
f//($> _ §x73/2
" _ 3 —5/2
fiz) = 55
f4($) = —1 .234‘ 5x_7/2
)= -2 Lo
2k — 1)l
fk(x) — (_1)k—1( k2k ) :L'_(Qk_l)/Q
2k — 1)1 22k
fk(9/4) = (‘Uk ' ok 32k—1
e (2k = 1)l2k
=(-1) e

Let’s write down the Taylor polynomial centred at a = 9/4.

Pyjasf(x) = f(9/4)+f"(9/4)(x—9/4)+f"(9/4) /2(x—9/4)*+ f"(9/4) /6(x—9/4)°
£4(9/4)/24(x — 9/4)* 4 f°(9/4)/120(z — 9/4)°.

So,
Pyjusf(x) =3/241/3(x — 9/4) — 1/3%(x — 9/4)* + 2/3%(z — 9/4)°
1-3.5.23 1-3.-5-7-24
— i3 (x—9/4)4+—120_39 (x —9/4)°.

If we plug in & = 2, so that x —9/4 = —1/4 we get an approximation
to f(2) = V2.
10997

Pya3(2) = 3/2+1/3(—1/4)—1/3°(1/4)*=2/3°(1/4)* = e A L4122

On the other hand,
1-3

|R3(2,9/4)] = -

@7/ < 20/ =1/16

In fact 10097
— _ ~ —6
[Rs(2,9/4)] = —— V2 a4 %107,
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Definition 19.3. Let A C R™ be an open subset which is convez (if @

and b belong to A, then so does every point on the line segment between
them). Suppose that f: A — R is C*.
Given a € A, the kth Taylor polynomaal of f centred at a is

Pacf (@) = f@)+ Y

1<i<n

Loy (@ o) —0). (1,0
Kl 01, 0y, - Oy T i T ) e A T

" 1<in iz,eig<n

)

The remainder is the difference
Ry f(Z) = [(Z) — Payf (D).

Theorem 19.4. Let A C R™ be an open subset which is convex. Sup-
pose that f: A — R is Ck“, and let @ and b belong to A.

Then there is a vectorf on the line segment between a and b such
that

o 1 8k+1f .
Fas®) =G5 2 gudm, () (b —ai) (b —as) - .

! .. 0x;
1<ly,l2, . Ik 4150 bt

Proof. As A is open and convex, we may find ¢ > 0 so that the
parametrised line

7 (—e,14+€) — R"  givenby  7(t) =a+t(b—a),
is contained in A. Let
g: (=6 1+€¢) — R,
be the composition of 7(t) and f(Z).

Claim 19.5.
Porg(t) = Parf(7(1)).
Proof of (19.5)). This is just the chain rule;

0= Y Lo a)

1<i<n ~7*
*f
g"(t) = Z :Eia%'( () (bi — ai)(b; — a;)
1<i<j<n
and so on. 0
So the result follows by the one variable result. 0
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We can write out the first few terms of the Taylor series of f and get
something interesting. Let h = & — d. Then

Peaf(@) = f@) + Y Sh@n+1/2 Y
1<i<j<n

1<i<n

2 f

8177;8[5]‘

(@)hsh;.

%

The middle term is the same as multiplying the row vector formed by
the gradient of f,
ﬁ of .. of of .
\Y =(=—(a), =—(a),... ,
F@ = (@, 5@ (@)
and the column vector given by h. The last term is the same as mul-
tiplying the matrix with entries

Lt
al’i8$j ’

on the left by h and on the right by the column vector given by h and
dividing by 2.
The matrix

is called the Hessian of f(Z).
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