22. DOUBLE INTEGRALS

Definition 22.1. Let R = [a,b] x [c,d] C R? be a rectangle in the
plane. A partition P of R is a pair of sequences:

a=xg <1< - -<xp,=0>
c=yY <y <---<yp,=d.
The mesh of P is
m(P) =max{z; —x; 1,y —yi1 |1 < i <k}
Now suppose we are given a function
f:R—R
Pick
Cij € Rij = w1, w5 X [yj—1,y5].
Definition 22.2. The sum
S=>"3"f@) (@ — zia)(y; — yi-1),
i=1 j=1
is called a Riemann sum.
We will use the short hand notation
Ar;, = x; — Ti1 and Ay; =y — Yj-1.

Definition 22.3. The function f: R — R is called integrable, with
integral 1, if for every e > 0, we may find a 6 > 0 such that for every
mesh P whose mesh size is less than o, we have

|II — S| <k,

where S is any Riemann sum associated to P.

//Rf(rc,y) dwdy =1,

to mean that f is integrable with integral I.

We use a sneaky trick to integrate over regions other than rectangles.
Suppose that D is a bounded subset of the plane. Then we can find a
rectangle R which completely contains D.

We write

Definition 22.4. The indicator function of D C R is the function

ip: R — R,
1



given by

ZD(Z') =

1 ifzeD
0 ifzé¢D.

If ip is integrable, then we say that the area of D is the integral

R

If 7p is not integrable, then D does not have an area.
Example 22.5. Let
D ={(z,y) € [0,1] x[0,1][z,y € Q}.
Then D does not have an area.

Definition 22.6. If f: D — R is a function and D is bounded, then
pick D C R C R? a rectangle. Define

f: R — R,
by the rule

0 otherwise.

- _{f(a:) ifveD

We say that f is integrable over D if f 15 integrable over R. In this

e ([

Proposition 22.7. Let D C R? be a bounded subset and let f: D —
R and g: D — R be two integrable functions. Let X be a scalar.
Then

) f+ g is integrable over D and

//f:cy +gxyd:cdy—/ fxydxdy—i—// (x,y) dx dy.

2) Af is integrable over D and

//)\f(x,y)dxdy:)\//f(a:,y)da:dy.

(3) If f(z,y) < g(z,y) for any (x,y) € D, then

/ fxyda:dy<// (z,y) dzdy.



(4) |f| is integrable over D and

|//Df<as,y)dxdy| s//D|f<x,y>|dxdy.

It is straightforward to integrate continuous functions over regions
of three special types:

Definition 22.8. A bounded subset D C R? is an elementary region
if it is one of three types:
Type 1:

D={(z,y) eR?|a<z<b~(z)<y<dz)},

where v: [a,b] — R and §: [a,b] — R are continuous functions.
Type 2:

where a: [¢,d] — R and (§: [¢,d] — R are continuous functions.
Type 3: D 1is both type 1 and 2.

Theorem 22.9. Let D C R? be an elementary region and let f: D —
R be a continuous function.
Then

(1) If D is of type 1, then

/[ taacay = | b ( / ::)ﬂ:v,y) dy) dr.

(2) If D if of type 2, then

/[ taasay = | d ( jj)f(m) dx) dy.

Example 22.10. Let D be the region bounded by the lines x = 0,
y = 4 and the parabola y = 2%. Let f: D — R be the function given

by f(z,y) = 2* + v
3



If we view D as a region of type 1, then we get

//Df(:v,y)dawjdy—/02 (/::x2+y2dy>dx

4

3
:/ [I2y+y—} dx
0 3 ]2

2 6 6
2
:/4:p2+——x4—x—dx
0 3 3

_ [4333 N 260 b x’ r

On the other hand, if we view D as a region of type 2, then we get

4/ Ve
//f(x,y)dxdy:/ (/ x2+y2dx)dy
D 0 0
41,3 VY
:/{—+xy2} dy
o L3 0

4,3/2
0 3
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