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28. Manifolds with boundary 

Definition 28.1. Upper half space is the set 

Hm = { (x1, x2, . . . , xm) | xm ≥ 0 } ⊂ Rm . 

The boundary of Hm, is 

∂Hm = { (x1, x2, . . . , xm) | xm = 0 } ⊂ Mm . 

Definition 28.2. A subset M ⊂ Rk is a smooth m-manifold with 
boundary if for every �a ∈ M there is an open subset W ⊂ Rk and an 
open subset U ⊂ Rm, and a diffeomorphism 

�g : Hm ∩ U −→ M ∩ W. 

The boundary of M is the set of points �a which map to a point of the 
boundary of Hm . 

Example 28.3. The solid ellipse, � �2 � �2 
M = { (x, y) ∈ R2 | x

a 
+ 

y

b 
≤ 1 }, 

is a 2-manifold with boundary. 

Let 
U1 = { (u, v) | 0 < u < 2π, −1 < v < 1 }

and 
W1 = R2 − { (x, 0) ∈ R2 | x ≥ 0 }. 

Define a function 
g1 : U1 −→ W1, 

by the rule 

�g1(u, v) = (a(1 − v) cos u, b(1 − v) sin u). 

Similarly, let 

U2 = { (u, v) | − π < u < π, −1 < v < 1 } 

and 
W2 = R2 − { (x, 0) ∈ R2 | x ≤ 0 }. 

Define a function 
g2 : U2 −→ W2, 

by the rule 

�g2(u, v) = (a(1 − v) cos u, b(1 − v) sin u). 

Finally, let 
U3 = { (u, v) | u 2 

1 
+ (v − b)2 < b } 
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and 

W3 = { (x, y) | x 2 + y 2 < b }. 
Define a function 

g3 : U3 −→ W3, 

by the rule 

�g3(u, v) = (u, v − b). 

Let 

F� : R2 −→ R2 , 

be the function 

F� (x, y) = (−y, x). 

Then � � 2π 

F� d�s = (−b sin t, a cos t) (a cos t, b sin t) dt· · 
∂M 0
� 2π


= ab dt 
0 

= 2πab. 

On the other hand, 

curl F� = 
∂F2 ∂F1 

= 1 − (−1) = 2,
∂x 

− 
∂y 

and so 

curl F� dx dy = 2πab. 
M 

In fact this is not a coincidence: 

Theorem 28.4 (Green’s Theorem). Let M ⊂ R2 be a smooth 2­

manifold with boundary, and let F� : M −→ R2 be a smooth vector field 
such that 

{ (x, y) ∈ M | F (x, y) � 0 } ⊂ R2 , 

is a bounded subset. 
Then �� � � � 

∂F2 ∂F1 

M ∂x 
− 

∂y 
dx dy = 

∂M 
F� · d�s. 

Here ∂M is oriented, so that M is on the left as we go around ∂M (in 
the positive direction). 
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Proof. In the first step we assume that 

M = H2 = { (u, v) | v ≥ 0 } ⊂ R2 . 

By assumption we may find a and b such that F� = �0 outside the box 

[−a/2, a/2] × [0, b/2] ⊂ H2 . 

So F� (u, v) = �0 if u = ±a or v = b. Let’s calculate the LHS, �� � � �� �� 
∂F2 ∂F1 ∂F2 ∂F1 

∂u 
− 

∂v 
du dv = 

∂u 
du dv − 

∂v 
du dv 

H2 H2 H2 � b � a � a � b∂F2 ∂F1 
= du dv − dv du 

∂u ∂v � 
0 

b 
−a −a 0 � a 

= F2(a, v) − F2(−a, v) dv − F1(u, b) − F1(u, 0) du �0 −a 
a 

= F1(u, 0) du. 
−a 

Okay, now let’s parametrise the boundary of the upper half plane, 

x : R −→ ∂H2 

by the rule 
�x(u) = (u, 0). 

Then 
�x�(u) = ı̂. 

Let’s calculate the RHS, 
a 

F� d�s = F� (�x(u)) �x�(u) du 
∂H2 

· · �−a 
a 

= F� (u, 0) ı̂ du· �−a 
a 

= F1(u, 0) du. 
−a 

So the result holds if M = H2 . This completes the first step. 
In the second step, we suppose that there is a diffeomorphism 

�g : H2 ∩ U −→ M ∩ W, 

such that for some positive real numbers a and b, we have 

(1) [−a, a] × [0, b] ⊂ H2 ∩ U , 
(2) F� = �0 outside �g([−a/2, a/2] × [0, b]), and 
(3) det D�g(u, v) > 0 for every (u, v) ∈ H2 ∩ U . 
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In this case, parametrise ∂M ∩ W as follows; define 

�s : (−a, a) −→ ∂M ∩ W, 

by the rule 

�s(u) = �g(�x(u)) = �g(u, 0). 

Note that this is compatible with the orientation, as we are assuming 
that the Jacobian of g is positive. 

a 

F� d�s = F� (�s(u)) �s�(u) du· · 
∂M �−a 

a 

= F� (�g(�x(u)))D�g(�x(u)) �x�(u) du· �−a 

= G� d�s, 
∂H2 

· 

where 

G� : H2 ,−→ R2 

is defined by the rule 

G� (u, v) = 
F� (�g(u, v))D�g(u, v) if (u, v) ∈ U 
�0 otherwise. 

Now we compute, 

∂G2 ∂G1 ∂ ∂x ∂y ∂ ∂x ∂y

∂u 

− 
∂v 

= 
∂u 

F1 
∂v 

+ F2 
∂v 

− 
∂v 

F1 
∂u 

+ F2 
∂u


∂F1 ∂x ∂F1 ∂y ∂x ∂2x 
= + + F1

∂x ∂u ∂y ∂u ∂v ∂u∂v 

∂F2 ∂x ∂F2 ∂y ∂y ∂2y
+ + + F2

∂x ∂u ∂y ∂u ∂v ∂u∂v 

∂F1 ∂x ∂F1 ∂y ∂x ∂2x − 
∂x ∂v 

+ 
∂y ∂v ∂u 

− F1 
∂v∂u 

∂F2 ∂x ∂F2 ∂y ∂y ∂2x − 
∂x ∂v 

+ 
∂y ∂v ∂u 

− F2 
∂v∂u 

∂F2 ∂x ∂y ∂x ∂y ∂F1 ∂x ∂y ∂x ∂y 
= 

∂x ∂u ∂v 
− 

∂x ∂u 
− 

∂y ∂u ∂v 
− 

∂x ∂u 

∂F2 ∂F1 ∂(x, y) 
= 

∂x 
− 

∂y ∂(u, v) 
. 
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Using this, we get �� � � �� � � 
∂G2 ∂G1 ∂G2 ∂G1 

H2 ∂u 
− 

∂v 
du dv = 

H2 ∂u 
− 

∂v 
du dv �� ∩U � � 

∂F2 ∂F1 ∂(x, y) 
= du dv 

H2∩U ∂x 
− 

∂y ∂(u, v) 

∂F2 ∂F1 
= 

∂x 
− 

∂y 
dx dy �� M ∩�W � 

∂F2 ∂F1 
= 

∂x 
− 

∂y 
dx dy. 

M 

Putting all of this together, we have �� � � �� � � 
∂F2 ∂F1 ∂G2 ∂G1 

∂x 
− 

∂y 
dx dy = 

∂u 
− 

∂v 
du dv 

M H2 

= G� d�s· �∂H2 

= F� d�s.· 
∂M 

This completes step 2. 
We now turn to the third and final step. To complete the proof, we 

need to invoke the existence of partitions of unity. Starting with F� , I 
claim that there are vector finitely many fields F1, F2, . . . , Fk, each of 
which satisfy the hypotheses of step 2, such that 

k

F� = F�1 + F�2 + + F�k = F�i.· · · 
i=1 

Indeed, start with a partition of unity, 

m

1 = ρi, 
i=1 

multiply both sides by F� , to get 

m

F� = i = 1mρiF� = F�i. 
i=1 
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Granted this, Green’s Theorem follows very easily, �� � � �� � � 

M 

∂F2 

∂x 
− 

∂F1 

∂y 

k

dx dy = 
� 

i=1 M 

∂Fi,2 

∂x 
− 

∂Fi,1 

∂y 
dx dy 

k� � 
= �Fi · d�s. 

i=1� 
∂M 

= �F · d�s. � 
∂M 

Lemma 28.5. Let K ⊂ Rn . Suppose that K is containedin the union 
of closed balls B1, B2, . . . , Bm, such that any point of K belongs to the 
interior of at least one of B1, B2, . . . , Bm. 

Then we may find smooth functions ρ1, ρ2, . . . , ρm such that ρi is zero 
outside Bi and 

m

1 = ρi. 
i=1 

Proof. We prove the case n = 2. The general case is similar, only 
notationally more involved. First observe that it is enough to find 
smooth functions σ1, σ2, . . . , σm, such that σi is zero outside Bi and 
such that 

m

σ = σi, 
i=1 

does not vanish at any point of K. Indeed, if we let 
σi

ρi = ,
σ 

then ρi is smooth, it vanishes outside Bi and dividing both sides of the 
equation above by σ, we have 

m

1 = ρi. 
i=1 

In fact it suffices to find functions σ1, σ2, . . . , σm, such that σi vanishes 
outside Bi and which is non-zero on the interior of Bi (replacing σi 

by σi 
2, so that σi 

2 is positive on the interior of Bi, we get rid of the 
annoying possibility that the sum is zero because of cancelling). It is 
enough to do this for one solid circle Bi and we might as well assume 
that B = Bm = B1 is the solid unit circle. Using polar coordinates, we 
want a function of one variable r which is zero outside [0, 1] and which 
is non-zero on (0, 1), so we are now down to a one variable question. 

6 



At this point we realise we want a smooth function, 

f : R −→ R, 

all of whose derivatives are zero at 0 and yet the function f is not the 
zero function. Such a function is given by 

f(x) = e−1/x2 
. � 
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