28. MANIFOLDS WITH BOUNDARY

Definition 28.1. Upper half space is the set
H™ = { (21,22, ..., %) | Tm >0} CR™
The boundary of H™, is
OH™ = {(z1, 22, ..., %) [T =0} C M™,
Definition 28.2. A subset M C R* is a smooth m-manifold with

boundary if for every @ € M there is an open subset W C R* and an
open subset U C R™, and a diffeomorphism

gH"NU — MNW.
The boundary of M is the set of points @ which map to a point of the
boundary of H™.

Example 28.3. The solid ellipse,

M={yer] (2) +(4) <1

a
s a 2-manifold with boundary.

Let
Uy ={(uy,v)|0<u<2m,-1<v<1}
and
W, =R*—{(2,0) e R*|z >0}
Define a function
Gr: Uy — W,
by the rule
g1(u,v) = (a(l —v) cosu, b(1 — v) sinw).
Similarly, let
Uy={(u,v)| —n<u<m-1<v<l1}
and
Wy =R*—{(2,0) e R*|z <0}
Define a function
Go: Uy — W,
by the rule
G2(u,v) = (a(l —v) cosu, b(1 — v) sinu).

Finally, let
Us; = {(u,v)|u2—|—(v—b)2 <b}
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and
Wy ={(z,y) ]2 +y><b}.

Define a function

gs: Us — W,
by the rule

g3(u,v) = (u,v —b).
Let

F:R? — R%

be the function
F(w,y) = (-y,x).

Then

2w
/ ﬁ-d§:/ (—bsint,acost) - (acost,bsint) dt
oM 0

27
= / abdt
0

= 2mab.
On the other hand,
oF, O0F;
[F="2_Z1l_1_(-1)=2

and so

// curl F dz dy = 2mab.
M

In fact this is not a coincidence:

Theorem 28.4 (Green’s Theorem). Let M C R? be a smooth 2-

manifold with boundary, and let F: M — R? be a smooth vector field
such that

{(z,y) € M|F(z,y) #0} C R?,

1s a bounded subset.

Then
// <@—@> dxdy—/ F.ds.
oM

Here OM s oriented, so that M is on the left as we go around OM (in
the positive direction,).
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Proof. In the first step we assume that
M =H?= {(u,v)|v>0} C R
By assumption we may find a and b such that F = 0 outside the box
[—a/2,a/2] x [0,b/2] C H.
So F (u,v) = 0 if u = +a or v = b. Let’s calculate the LHS,

// (%—@> dudv—/ %dudv—/ @dudv
m2 \ Ou v H2 m2 0

_/0 Fy(a,v) — Fg(—a,v)dv—/_aFl(u,b)—Fl(u,O)du
:/_aFl(u,O)du.

a

Okay, now let’s parametrise the boundary of the upper half plane,
Z: R — OH?,
by the rule

Then

:/ Fi(u,0) du.

So the result holds if M = H?. This completes the first step.
In the second step, we suppose that there is a diffeomorphism

g HNU — MNW,
such that for some positive real numbers a and b, we have
(1) [—a,a] x [0,0] CH*NU,
(2) F =0 outside §([—a/2,a/2] x [0,b]), and

(3) det Dg(u,v) > 0 for every (u,v) € HZNU.
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In this case, parametrise OM N W as follows; define
§: (—a,a) — OM NW,

by the rule

§(u) = g(Z(u)) = g(u,0).
Note that this is compatible with the orientation, as we are assuming
that the Jacobian of g is positive.

where

is defined by the rule

Glu,v) = {Jf (§(u, 0))Dg(u,v) if (w,0) €U
0 otherwise.
Now we compute,
0Gs 8G1 B 8 ox Jy o ox By
Ou v (F o " b2 811) v (Fl ou " F ou
8F1 or 8F1 ay or 821.
a + F1
Ox (9u 8y u) o oudv
+ ( I 8u 6y 8u) 5 +F28uc%
OF) Ox 0F1 (’)y (’)_ e 92
Or 02} 8y o ] ou Y 9vou
8F28£C +8F2 ay a__ 02%r
dr v dy dv) du 2 vou

" Oz \Oudv Oxou) oy udv Oz du
[ 0F; B OF\ O(z,y)
~\ 0z 9y ) o(u,v)
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Using this, we get

JLGoe 5 v L

L)

Putting all of this together, we have

L2 e (55 e
H2 81}
_ / 45
OH2

- / 45
oM
This completes step 2.

We now turn to the third and final step. To complete the proof, we
need to invoke the existence of partitions of unity. Starting with F, 1
claim that there are vector finitely many fields £}, F5, ..., F}, each of
which satisfy the hypotheses of step 2, such that

ol

'111

k
FofiRe+ A YR
Indeed, start with a partition of unity,
i=1

multiply both sides by F , to get

FoYim1mpF =Y F.
=1
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Granted this, Green’s Theorem follows very easily,

oF, 0k OF, OF;,
/(5 -%) dxdy_Z//( -t ) ardy
:Z/ F,.ds.
. oM

=1

_/ F.ds. O
oM

Lemma 28.5. Let K C R™. Suppose that K is containedin the union
of closed balls By, Bo, . .., By, such that any point of K belongs to the
interior of at least one of By, Ba, ..., By,.

Then we may find smooth functions py, pa, ..., pm Such that p; is zero
outside B; and

m

i=1

Proof. We prove the case n = 2. The general case is similar, only
notationally more involved. First observe that it is enough to find
smooth functions o4, 09,...,0,,, such that o; is zero outside B; and

such that
o= o
i=1

does not vanish at any point of K. Indeed, if we let
g;

Pi = —,
o

then p; is smooth, it vanishes outside B; and dividing both sides of the
equation above by o, we have

m
i=1
In fact it suffices to find functions oy, 09, ..., 0y, such that o; vanishes

outside B; and which is non-zero on the interior of B; (replacing o;
by ¢, so that ¢ is positive on the interior of B;, we get rid of the
annoying possibility that the sum is zero because of cancelling). It is
enough to do this for one solid circle B; and we might as well assume
that B = B,,, = By is the solid unit circle. Using polar coordinates, we
want a function of one variable r which is zero outside [0, 1] and which

is non-zero on (0, 1), so we are now down to a one variable question.
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At this point we realise we want a smooth function,
T R— R,

all of whose derivatives are zero at 0 and yet the function f is not the
zero function. Such a function is given by

f(z) = e V7 d
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