32. STOKES THEOREM
Definition 32.1. We say that a vector field
F:iA—s R™,
has compact support if there is a compact subset K C A such that
F(Z) =0,
for every ¥ € A— K.

If S C R3 is a smooth manifold (possibly with boundary) then we
will call S a surface. An orientation is a “continuous” choice of unit
normal vector. Not every surface can be oriented. Consider for example
the Mobius band, which is obtained by taking a piece of paper and
attaching it to itself, except that we add a twist.

Theorem 32.2 (Stokes’ Theorem). Let S C R? be a smooth oriented

surface with boundary and let F: S — R3 be a smooth vector field
with compact support.

Then
//curlﬁ-dgz/ F"-dé',
S as

where OS is oriented compatibly with the orientation on S.

Example 32.3. Let S be a smooth 2-manifold that looks like a pair
of pants. Choose the orientation of S such that the normal vector is
pointing outwards. There are three oriented curves Cy, Cy and C3 (the

two legs and the waist). Suppose that we are given a vector field B with
zero curvature. Then (32.2) says that
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Here C] and C), denote the curves Cy and Cy with the opposite orien-
tation. In other words,

/E-d§:/§~d§+/§~d§.
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Proof of . We prove this in three steps, in very much the same
way as we proved Green’s Theorem.

Step 1: We suppose that M = H? C R? C R3, where the plane is
the xy-plane. In this case, we can take n = 12:, and this induces the
standard orientation of the boundary. Note that

- OF. oF,
curl Fop = —2 21
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and so the result reduces to Green’s Theorem. This completes step 1.
Step 2: We suppose that there is a compact subset K C S and a

parametrisation
g HNU — SNW,

which is compatible with the orientation, such that

(1) F(#)=0if fe S — K, and

(2) KCcSNnWw.
Define a vector field G: H2 — R? by the rule
G_?(U,U) _ i(g(uuv>>D§(uav) (u7v) el
0 (u,v) ¢ U.
Note that

ox dy 0z
G1(u,v) = Fl%—i_FQa —{—Fgau

ox ay 0z
Galu,v) = Frg- + Fygo + Py

Using step 1, it is enough to prove:

Claim 32.4.

(1)
//Scurlﬁ.dgz //H (% - %) du dv.
(2)
//8513 .d3

Proof of (32.4). Note that
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On the other hand,
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It follows that
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_ 3(y,z)A_ 8(3:72)A a(xay)A
d(u, v)l O (u, ?J)j * d(u, v)k'
So,
= 0§ 0g 0F; 0F,)\ 0(y,z) (O0F3 OFy\ O(x,z) (0Fy, OF)\ O(z,y)
1 729,99 _ _ _ _ .
U e B (3y 0z ) J(u, v)+ or 0Oz (9(u,v)+ dr 0y ) O(u,v)

On the other hand, if one looks at the proof of the second step of
Green’s theorem, we see that

0Gy  0G,

ou ov’

is also equal to the RHS (in fact, what we calculated in the proof of
Green’s theorem was the third term of the RHS; by symmetry the other
two terms have the same form). This is (1).

For (2), let’s parametrise OH? N U by #(u) = (u,0) and S N W by
S(u) = g(#(u)). Then

/ﬁ-dg’:/ F.d3s
0S8 oSNW

and this is (2). O

This completes step 2.
Step 3: We again use partitions of unity. It is straightforward to

cover the bounded set K by finitely many compact subsets K1, K, ..., K,

such that given any smooth vector field which is zero outside K;, then
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the conditions of step 2 hold. By using a partition of unity, we can find
smooth functions py, po, ..., pr such that p; is zero outside K; and

k
i=1

Multiplying both sides of this equation by F , we have

k
F=Y"F.

i=1

where F’z = piﬁ is a smooth vector field, which is zero outside K;. In

this case
k
//curlF-dS:Z//curlFi~dS
s = /s
k
:Z/ F .ds
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