
5. n-dimensional space 

Definition 5.1. A vector in Rn is an n-tuple �v = (v1, v2, . . . , vn). The 
zero vector �0 = (0, 0, . . . , 0). Given two vectors �v and w� in Rn, the 
sum �v + w� is the vector (v1 + w1, v2 + w2, . . . , vn + wn). If λ is a scalar, 
the scalar product λ�v is the vector (λv1, λv2, . . . , λvn). 

The sum and scalar product of vectors in Rn obey the same rules as 
the sum and scalar product in R2 and R3 . 

Definition 5.2. Let �v and w� ∈ Rn . The dot product is the scalar 

�v w� = v1w1 + v2w2 + . . . vnwn.· 
The norm (or length) of �v is the scalar 

��v� = 
√

�v �v. · 

The scalar product obeys the usual rules. 

Example 5.3. Suppose that �v = (1, 2, 3, 4) and w� = (2, −1, 1, −1) and 
λ = −2. Then 

�v + w� = (3, 1, 4, 3) and λ�w = (−4, 2, −2, 2). 

We have 
�v w� = 2 − 2 + 3 − 4 = −1.· 

The standard basis of Rn is the set of vectors, 

e1 = (1, 0, . . . , 0), e2 = (0, 1, . . . , 0), e1 = (0, 0, 1, . . . , 0), . . . en = (0, 0, . . . , 1). 

Note that if �v = (v1, v2, . . . , vn), then 

�v = v1e1 + v2e2 + + vnen.· · · 
Let’s adopt the (somewhat ad hoc) convention that �v and w� are 

parallel if and only if either �v is a scalar multiple of w� , or vice-versa. 
Note that if both �v and w� are non-zero vectors, then �v is a scalar 
multiple of w� if and only if w� is a scalar multiple of �v. 

Theorem 5.4 (Cauchy-Schwarz-Bunjakowski). If �v and w� are two vec­
tors in Rn, then 

|�v · w� | ≤ �v��w�, 
with equality if and only if �v is parallel to w� . 

Proof. If either �v or w� is the zero vector, then there is nothing to prove. 
So we may assume that neither vector is the zero vector. 

Let �u = x�v + w� , where x is a scalar. Then 

0 ≤ �u �u = (�v �v)x 2 + 2(�v w� )x + w� w� = ax 2 + bx + c.· · · · 
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So the quadratic function f(x) = ax2 + bx + c has at most one root. It 
follows that the discriminant is less than or equal to zero, with equality 
if and only if f(x) has a root. So 

4(�v w� )2 − 4��v�2�w��2 = b2 − 4ac ≤ 0.· 

Rearranging, gives 

(�v · w� )2 ≤ ��v�2�w��2 . 

Taking square roots, gives 

|�v · w� | ≤ �v��w�. 

Now if we have equality here, then the discriminant must be equal to 
zero, in which case we may find a scalar λ such that the vector λ�v + w�
has zero length. But the only vector of length zero is the zero vector, so 
that λ�v+w� = �0. In other words, w� = −λ�v and �v and w� are parallel. � 

Definition 5.5. If �v and w� ∈ Rn are non-zero vectors, then the angle 
between them is the unique angle 0 ≤ θ ≤ π such that 

�v w�
cos θ = 

· 
. 

��v��w�� 

Note that the fraction is between −1 and 1, by (5.4), so this does 
makes sense, and we showed in (5.4) that the angle is 0 or π if and only 
if �v and w� are parallel. 

Definition 5.6. If A = (aij ) and B = (bij ) are two m × n matrices, 
then the sum A + B is the m × n matrix (aij + bij ). If λ is a scalar, 
then the scalar multiple λA is the m × n matrix (λaij ). 

Example 5.7. If 

A =
1 −1 

, and B =
1 1 

,
3 −4 2 −1 

then � � 
2 0 

A + B = ,
5 −5 

and � � 
3 −3 

3A = .
9 −12 

Note that if we flattened A and B to (1, −1, 3, −4) and (2, 0, 5, −5) 
then the sum corresponds to the usual vector sum (3, −1, 8, −9). Ditto 
for scalar multiplication. 
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Definition 5.8. Suppose that A = (aij ) is an m × n matrix and B = 
(bij ) is an n × p matrix. The product C = AB = (cij ) is the m × p 
matrix where 

n

cij = ai1b1j + ai2b2j + ai3b3j + + ainbnj = ailblj .· · · 
l=1 

In other words, the entry in the ith row and jth column of C is the 
dot product of the ith row of A and the jth column of B. This only 
makes sense because the ith row and the jth column are both vectors 
in Rn . 

Example 5.9. Let 

A =
1 −2 1 

,
1 −1 5 

and ⎛ ⎞ 
2 1 

B = ⎝ 1 
−1 

−4 
1 

⎠ . 

Then C = AB has shape 2 × 2, and in fact 

−1	 10 
C = AB = . −4	 10 

Theorem 5.10. Let A, B and C be three matrices, and let λ and µ be 
scalars. 

(1)	 If A, B and C have the same shape, then (A + B) + C = 
A + (B + C). 

(2)	 If A and B have the same shape, then A + B = B + A. 
(3)	 If A and B have the same shape, then λ(A + B) = λA + λB. 
(4)	 If Z is the zero matrix with the same shape as A, then Z + A = 

A + Z. 
(5)	 λ(µA) = (λµ)A. 
(6) (λ + µ)A = λA + µA. 
(7)	 If In is the matrix with ones on the diagonal and zeroes every­

where else and A has shape m×n, then AIn = A and ImA = A. 
(8)	 If A has shape m × n and B has shape n × p and C has shape 

p × q, then A(BC) = (AB)C. 
(9)	 If A has shape m × n and B and C have the same shape n × p, 

then A(B + C) = AB + AC. 
(10)	 If A and B have the same shape m × n and C has shape n × p, 

then (A + B)C = AC + BC. 
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Example 5.11. Note however that AB = BA in general. For example 
if A has shape 1 × 3 and B has shape 3 × 2, then it makes sense to 
multiply A and B but it does not make sense to multiply B and A. 

In fact even if it makes sense to multiply A and B and B and A, the 
two products might not even have the same shape. For example, if 

1 
2 

⎞⎛ ⎝
 ⎠
A =
 ,

−1


and

B = 2 −1 3 ,


then AB has shape 3 × 3,
 ⎞⎛ 
2 −1 3

4 −2 6


1

⎝
 ⎠
AB =
 ,

−2
 −3


but BA has shape 1 × 1, 

BA = (2 − 2 − 3) = (−3). 

But even both products AB and BA make sense, and they have the 
same shape, the products still don’t have to be equal. Suppose
� � � � 

A = 
1 
0 

1 
1 

, and B = 
1 
1 

0 
1 

. 

Then AB and BA are both 2 × 2 matrices. But 

2 1 1 1 
AB = , and BA = .

1 1 1 2 

One can also define determinants for n × n matrices. It is probably 
easiest to explain the general rule using an example:

−1 
−2 1 1 
1 

1 0 0 2

0 1
 2 0 1


2 0 1 −1 
1 

− 2
 1 −2 1

1


=
 .

1 −2 1


1

0 1
 0
 0


0
 0 1


Notice that we as expand about the top row, the sign alternates +−+−, 
so that the last term comes with a minus sign. 

Finally, we try to explain the real meaning of a matrix. Let 

1 1 
A = .

0 1 

Given A, we can construct a function 

f : R2 −→ R2 , 
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by the rule 
f(�v) = A�v. 

If �v = (x, y), then 
A�v = (x + y, y). 

Here I cheat a little, and write row vectors instead of column vectors. 
Geometrically this is called a shear ; it leaves the y-axis alone but one 
goes further along the x-axis according to the value of y. If 

a b 
A = 

c d 

the resulting function sends (x, y) to (ax + by, cx + dy). In fact the 
functions one gets this way are always linear. If 

2 0 
A = ,

0 −1 

then f(x, y) = (2x − y), and this has the result of scaling by a factor 
of 2 in the x-direction and reflects in the y-direction. 

In general if A is an m × n matrix, we get a function 

f : Rn ,−→ Rm 

using the same rule, f(�v) = A�v. If B is an n × p matrix, then we get 
a function 

g : Rp −→ Rn , 

by the rule g(w� ) = B �w. Note that we can compose the functions f 
and g, to get a function 

f ◦ g : Rp −→ Rm . 

First we apply g to w� to get a vector �v in Rn and then we apply f to �v 
to get a vector in Rm . The composite function f g is given by the rule ◦
(f g)(w� ) = (AB)w� . In other words, matrix multiplication is chosen ◦
so that it represents composition of functions. 

As soon as one realises this, many aspects of matrix multiplication 
become far less mysterious. For example, composition of functions is 
not commutative, for example 

sin 2x = 2 sin x, 

and this is why AB = BA in general. Note that it is not hard to check 
that composition of functions is associative, 

f (g h) = (f g) h.◦ ◦ ◦ ◦ 

This is the easiest way to check that matrix multiplication is associa­
tive, that is, (8) of (5.10). 
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Functions given by matrices are obviously very special. Note that if 
f(�v) = A�v, then 

f(�v + w� ) = A(�v + w� ) = A�v + A�w = f(�v) + f(w� ), 

and 
f(λ�v) = A(λ�v) = λ(A�v) = λf(�v). 

Any function which respects both addition of vectors and scalar multi­
plication is called linear and it is precisely the linear functions which 
are given by matrices. In fact if e1, e2, . . . , en and f1, f2, . . . , fm are 
standard bases for Rn and Rm, and f is linear, then 

f(ej ) = aij fi, 

for some scalars aij , since f(ej ) is a vector in Rm and any vector in Rm 

is a linear combinaton of the standard basis vectors f1, f2, . . . , fm. If 
we put A = (aij ) then one can check that f is the function 

f(�v) = A�v. 
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