Solutions for PSet 5

1. (8.14:10)

(a) By hypothesis, we know s7f(x) = 0 for all x € B(a). By definition
VI(x) = (Dif(x), .., Daf(x)), thus Dy f(x) = -+ = Dof(x) = 0. By
the 1-dimensional theorem, this means that f(x) is constant on every line
X +tey,...x + te, for any x € B(a). Let f(a) = c. Given 'y € B(a), we
will prove that f(y) =c. Lety —a =dje; + - + d,ey, then:

c=f(a)=f(a+die;) =---= f(a+dies +--- +dyen) = f(y).

(b) The condition means, that a is a local maximum of the function f. In
particular, because f(x) = 0 for all x € B(a), 0 is a maximum for
all the functions f(a + te;). By the 1-dimensional theorem D;(f(a)) =
f'(a+te;) =0, and thus

Vf<a) = (le(a)a ce 7an<a)) =

2. (8.17:6) = Vlzyl = VlzlV1yl
(a) f(z, y) = 0 on the lines (2,0) and (0,y). Thus 8f = 8f = 0 at the origin.

(b) For f to have a tangent plane at the origin, it must have a total derivative
at the origin. If indeed f had a total derivative at the origin then we
expect

Pl ) tove (LS 2L 2

But in reality, f'((z,y = x); (1, 1)) is the partial derivative along the line
z = y. On this line, f(x,z) = =z, thus f'((z,y);(1,1)) = 1. This defies
our expectation. Thus f cannot have a total derivative, nor a tangent
plane at the origin.

3. (8.17:10) Denote f(z,y,2) = (r—c)*+y*+2? and g(z,y, 2) = 2>+ (y—1)?+2°
Then the spheres in question are given by:
Li(3) = {(x,y,2): f(a,y,2) = (v — ) +y* +2° = 3}
L,(1) = {(z,y,2): g(z,y,2) =2> + (y— 1) +2* =1}



At a point (z,y, z) where the two spheres intersect:

gradient of L;(3) is 7 f(z,y,2) = (2(xz —c¢),2y,22)
gradient of L,(1)is v g(z,y,2) = (22,2(y —1),22)

and T'(Ls(3)), T(Ly(1)) are the respective tangent planes of L¢(3), Ly(1).

By definition, the gradient is perpendicular to the tangent plane. Or </ f(z,y, z)
is perpendicular to T'(L¢(3)) and 7g(z, y, z) perpendicular to T'(L,(1)). Thus
the tangent planes T'(Ls(3)) and T'(L,(1)) are perpendicular at the intersection
if and only if the gradients are perpendicular to each other at the intersection:

V(,y,2) - vy(r,y,2) =0 or da(rx —c) +4y(y — 1) +42° =0

To find ¢ for the above condition to hold, we can solve the system of 3 equa-
tions:

( - +yt 422 = 3
+y-1) 42" =
4x(x—c)+4y(y 1)+42> = 0

Add the first two equations to get 2(z? + y? + 2?) — 2zc — 2y = 3 — 2. This,
combined with the last equation, gives ¢ = 3. Thus ¢ = +v/3.

4. Consider a € R". To prove continuity at a we need to find a § > 0 for every
given € > 0 with the property that |[x —a| < § implies |f(x) — f(a)] < e.
Note that the set of points f(x) for which |f(x) — f(a)| < € are contained in
an open ball B.(f(a)). Now the preimage of this open ball f~1(B.(f(a))) is
open but may not be connected. That is, it may consist of the union of a few
disjoint open sets. But, necessarily, one of these open sets contains a. Call this
open set U. Then openness implies there exists 6 > 0 such that Bs(a) C U.
Moreover, as f(U) C B.(f(a)), containment implies f(Bs(a)) C B.(f(a)). It
follows that f is continuous.

5. T, is defined such that:

f(x) = f(a) + Ta(x — a) + |x — a|E(a,x — a)



where F(a,x —a) — 0 as [x —a| — 0.
Thus T, = f if and only if:

f(x) = f(a) + f(x —a) + |x — a| E(a,x — a)

where E — 0 as |x — a|] — 0.

Since f is a linear transformation,

f(x) = fla)+ f(x—a)

and thus F(a,x —a) =0 as |[x —a|] — 0.
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