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Solutions for PSet 5 

1. (8.14:10) 

(a) By hypothesis, we know �f(x) =  0 for all x ∈ B(a). By definition 
�f(x) = (D1f(x), . . . , Dnf(x)), thus D1f(x) =  · · ·  = Dnf(x) = 0. By 
the 1-dimensional theorem, this means that f(x) is constant on every line 
x + te1, . . .  x + ten for any x ∈ B(a). Let f(a) =  c. Given y ∈ B(a), we 
will prove that f(y) =  c. Let y − a = d1e1 + · · · + dnen, then: 

c = f(a) =  f(a + d1e1) =  · · · = f(a + d1e1 + · · · + dnen) =  f(y). 

(b) The condition means, that a is a local maximum of the function f . In  
particular, because f(x) =  0 for all x ∈ B(a), 0 is a maximum for 
all the functions f(a + tei). By the 1-dimensional theorem Di(f(a)) = 
f ′(a + tei) = 0, and thus 

�f(a) = (D1f(a), . . . , Dnf(a)) = 0. 

2. (8.17:6) f(x, y) =  |xy| = |x| |y| 
(a) f(x, y) = 0 on the lines (x, 0) and (0, y). Thus ∂f = ∂f = 0 at the origin. 

∂x ∂y 

(b) For f to have a tangent plane at the origin, it must have a total derivative 
at the origin. If indeed f had a total derivative at the origin then we 
expect 

f ′((x, y); (1, 1)) to be ( 
∂f

, 
∂f 

) · (1, 1) = 
∂f 

+ 
∂f 

= 0 + 0 = 0. 
∂x ∂y ∂x ∂y 

But in reality, f ′((x, y = x); (1, 1)) is the partial derivative along the line 
x = y. On this line, f(x, x) =  x, thus  f ′((x, y); (1, 1)) = 1. This defies 
our expectation. Thus f cannot have a total derivative, nor a tangent 
plane at the origin. 

3. (8.17:10) Denote f(x, y, z) = (x−c)2 +y2 +z2 and g(x, y, z) =  x2 +(y−1)2 +z2 . 
Then the spheres in question are given by: 

Lf (3) = {(x, y, z) :  f(x, y, z) = (x − c)2 + y 2 + z 2 = 3}
Lg(1) = {(x, y, z) :  g(x, y, z) =  x 2 + (y − 1)2 + z 2 = 1} 
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At a p oint (x, y, z) where the two spheres intersect: 

gradient of Lf (3) is � f(x, y, z) = (2(x − c), 2y, 2z) 

gradient of Lg(1) is � g(x, y, z) = (2x, 2(y − 1), 2z) 

and T (Lf (3)), T (Lg(1)) are the respective tangent planes of Lf (3), Lg(1). 

By definition, the gradient is perpendicular to the tangent plane. Or �f(x, y, z) 
is perpendicular to T (Lf (3)) and �g(x, y, z) perpendicular to T (Lg(1)). Thus 
the tangent planes T (Lf (3)) and T (Lg(1)) are perpendicular at the intersection 
if and only if the gradients are perpendicular to each other at the intersection: 

�f(x, y, z) · �g(x, y, z) = 0 or 4x(x −  c) + 4y(y − 1) + 4z 2 = 0  

To find c for the above condition to hold, we can solve the system of 3 equa­
tions: 

(x −    c)2 + y 2 + z 2 = 3  

x 2 + (y − 1)2 +  z 2 = 1  

4x(x − c) + 4y(y − 1) + 4z 2 = 0  

Add the first two equations to get 2(x2 + y2 + z2) − 2xc − 2y = 3 − c2 . This, 
combined with the last equation, gives c2 = 3.  Thus  c = 

√± 3. 

4. Consider a ∈ n 
R . To prove continuity at a we need to find a δ > 0  for every 

given ε >  0 with the property that |x − a| < δ  implies |f(x) − f(a)| < ε. 
Note that the set of points f(x) for which |f(x) − f(a)| < ε  are contained in 
an open ball Bε(f(a)). Now the preimage of this open ball f−1(Bε(f(a))) is 
open but may not be connected. That is, it may consist of the union of a few 
disjoint open sets. But, necessarily, one of these open sets contains a. Call this 
open set U . Then openness implies there exists δ > 0  such that Bδ(a) ⊂ U . 
Moreover, as f(U) ⊂ Bε(f(a)), containment implies f(Bδ(a)) ⊂ Bε(f(a)). It 
follows that f is continuous. 

5. Ta is defined such that: 

f(x) = f (a) + T a(x − a) + | x − a|E(a, x − a) 
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where E(a, x − a) → 0 as  |x − a| → 0. 

Thus Ta = f if and only if: 

f(x) =  f(a) +  f(x − a) +  |x − a|E(a, x − a) 

where E → 0 as  |x − a| → 0. 

Since f is a linear transformation, 

f(x) =  f(a) +  f(x − a) 

and thus E(a, x − a) ≡ 0 as  |x − a| → 0. 
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