
Solutions for PSet 7 

1. (9.8:7) Hint: It might help to define a scalar field F (x, y, z) = f (u(x, y, z), v(x, y, z)) 
where u, v are as needed. We first assume that x = 0. Given g(x, y) = z , we  
know 

∂g ∂F/∂x ∂g ∂F/∂y 
= − ; = . 

∂x ∂F/∂z ∂y 
−

∂F/∂z 

Now, we need only use the chain rule to determine the result. First observe 
that ∇u = (−y/x2 , 1/x, 0), ∇v = (−z/x2 , 0, 1/x). Now we compute 

∂F 
= ∇f(u, v) · (∂u/∂x, ∂v/∂x) = D 1f(u, v)(−y/x2) + D 2

 2f(u, v)(−z/x ),
∂x

∂F 
= ∇f(u, v) · (∂u/∂y, ∂v/∂y) = D 1f(u, v)(1/x),

∂y 

∂F 
= ∇f(u, v) · (∂u/∂z, ∂v/∂z) = D 2f(u, v)(1/x). 

∂z 
An easy computation then gives 

∂g yD1f(u, v) z ∂g D f(u, v) 
= + ; = 

− 1
. 

∂x xD2f(u, v) x ∂y D2f(u, v) 

Thus 
∂g ∂g 

x + y = z = g(x, y). 
∂x ∂y 

2. (a) First, DF has the form of a block matrix. 

  �
I  0 

DF (x, y) =  n |
(1)

Dfx(x, y) | Dfy(x, y) 

�

This comes when we consider 

F (x, y) = (F1(x, y), . . . , Fn(x, y), f1(x, y), . . . , fm(x, y)) 

∂Fi ∂Fi
where here Fi(x, y) = x  · ei. Then = δij for 1 ≤ i, j ≤ n and = 0  

∂xj ∂yk 
for 1 ≤ i ≤ n, 1 ≤ k ≤ m. The bottom portion of the matrix is exactly 
what we get based on our determination of Dfx, Dfy. 

�

1 



(b)   

DF (a, b) =

�
I

 n | 0 
(2)

Dfx(a, b)  

�
| Dfy(a, b) 

The invertibility of Df y gives that DF is invertible at (a, b). That is, 
recall that an invertible matrix has a row reduction that reduces it to the 
identity matrix. Using this particular row reduction, reduce the bottom 

˜m rows of DF . The new matrix DF (a, b) is lower triangular (everything 
above the main diagonal is  ˜zero). Recall in this case that det(DF (a, b)) = 
1 and since row reduction operations preserves the non-zero property of 
the determinant, det(DF (a, b  ˜)) = det(DF (a, b)) = 0.  

(c) Let m : n 
R → n+m 

R such that m(x) = (x, 0). It’s obvious that m is a 
continuous function and m−1(W ) = U . This, along with the fact that W 
is open (by definition), implies U is open. 

(d) Now if x ∈ U then there exists y ∈ m 
R such that f(x, y) = 0. Suppose 

there was a second y′ such that f(x, y′) = 0. But then F (x, y) = F (x, y′) 
and since F is one-to-one we know that y = y′ . 
We define g : U → m 

R by this uniqueness, and by definition f(x, g(x)) = 
0. Now for x ∈ U , F (x, g(x)) = (x, 0). Let G again be the inverse of F . 
Then G(x, 0) = (x, g(x)). Now notice for any 1 ≤ k ≤ n, 

G(x + hek, 0) − G(x, 0) = (x + hek, g(x + hek)). 

Thus, the differentiability of G at (x, 0) in the direction ek for each 1 ≤ 
k ≤ n implies the differentiability of g. 

(e) Now we calculate the formula for the derivative: 
Let Φ : n → n+m 

R R such that Φ(x) = (x, g(x)). Then DΦ(x)h = 
(h, Dg(x)h). Now, for all x ∈ U , f(Φ(x)) = f(x, g(x)) = 0 and thus 

Df(x, g(x))DΦ(x) ≡ 0. 

Evaluating this at x = a we get 

Df(a, b)DΦ(a) = 0. 

Now note Df(x, y)DΦ(x) :  n → m 
R R and so for a fixed h ∈ n 

R we get 

0 = D f(a, b)DΦ(a)h = Df(a, b)(h, Dg(x)h) = D fx(a, b)h+Dfy(a, b)Dg(x)h. 

This gives the result. 

�
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3. (9.13:17) 

(a)	 f(x, y) = (3−x)(3−y)(x+y −3) vanishes at x = 3,  y = 3, and x+y = 3.  
We have f(x, y) > 0 for each of the 4 conditions: 

Box 3 > x  3 > y  x + y > 3  
Box 1 yes yes yes 
Box 2 yes no no 
Box 3 no yes no 
Box 4 no no yes 

In other words, if both x and y are big, then f(x, y) > 0. The colored 
lines on the graph below indicate where the function f(x, y) vanishes. 
Also f(x, y) changes sign whenever we cross one of the colored lines, thus 
the gray areas indicate where f(x, y) > 0. 
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(b) The partial derivatives: 

D1f(x, y) =  −1(3 − y)(x + y − 3) + (3 −  x)(3 − y)1 = (y − 3)(2x + y − 6) 

D2f(x, y) = (3 −  x)(−1)(x + y − 3) + (3 −  x)(3 − y)1 = (x − 3)(x + 2y − 6) 

Thus D1f(x, y) = D 2(x, y) = 0 at stationary points (3, 3), (3, 0), (0, 3) 
and (2, 2) 

(c) The second derivative matrix is: 
  �

2y − 6 2x + 2y 
Hf(x, y) =  

− 9 
2x + 2y 2

�
− 9 x − 6 

Substituting at the stationary points: 
    

Hf(3, 3) = 

�
0 3

�
 6 3 
,  Hf(3, 0) = 

� − − �
, 

3 0  −3 0 

    �
0 −3 

� � −2 −1 
Hf(0, 3) = and Hf(2, 2) = 

�
−3 −6 −1 −2 

Thus: 
(x, y) tr(Hf(x, y)) det(Hf(x, y)) type of stationary point 
(3, 3) 0 -9 saddle 
(3, 0) -6 -9 saddle 
(0, 3) -6 -9 saddle 
(2, 2) -4 3 relative or local maximum 

The function has no relative minima. 

(d) Setting x = y the function f(x, x) is a polynomial of degree 3, thus it can 
be arbitrarily large and arbitrarily small too, thus it has no maxima and 
no minima, nor does f(x, y) in general. 

4. (9.15:8,13) 9.15:8 Let g1, g2 : 3 
R → R be defined as 

g1(x, y, z) =  x 2 −  xy + y 2 − z 2 − 1; 
  g2(x, y, z) =  x 2 + y 2 − 1 

The surfaces in question are g1(x, y, z) = 0  and  g2(x, y, z) = 0. We would like 
to minimize the distance to the origin, defined by the function f(x, y, z) =  
x2 + y2 + z2 on the surfaces {g1(x, y, z) = g 2(x, y, z) = 0}. 
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By the method of Lagrange multipliers there must be constants λ1 and λ2 such 
that: 

∇f = λ1∇g1 + λ2∇g2 

That is: 
(2x, 2y, 2z) =  λ1(2x − y, 2y − x, −2z) +  λ2(2x, 2y, 0) 

This leaves us with 5 equations: 

(2λ1 + 2λ2 − 2)x − λ1y = 0  

(2λ1 + 2λ2 − 2)y − λ1x = 0  

−(2λ1 + 2)z = 0  

x 2 − xy + y 2 − z 2 − 1 = 0  

x 2 + y 2 − 1 = 0  

By a straightforward case analysis the solutions are (x, y, z) = (1, 0, 0), (0, 1, 0), (−1, 0, 0), (0, −1, 0). 
The distance at each of these points is 1. 

9.15:13 In this problem 

g(x, y) =  x 2 + 4y 2 − 4 

The distance from the point (x, y) to the line x + y = 4  is  

f(x, y) =  
|x + √y − 4|

2 

Note that for any point (x, y) on the ellipse, x + y − 4 < 0, thus |x + y − 4| = 
4 − x − y. 

Using Lagrange multipliers at the extrema points there is a λ such that: 

∇f = λ∇g 

That is 
1 1 

(−√ , −√ ) =  λ(2x, 8y)
2 2

Thus we have three equations: 

1 −√ = 2λx 
2 

1 −√ = 8λy
2 

x 2 + 4y 2 − 4 = 0  
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4 1 
The solutions are (x, y) =  ±(√ , √ ). Evaluating f(x, y) at these solutions, 

5 √5  
4 +  5 4  

√ 

we find the greatest distance is  and the least distance is 
− 5 √

2 
√ . 

2 
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