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Solutions for PSet 8 

1. (10.5:11) Parameterize the sides of the square C by maps si : [0, 1] → R2 by 

s1(t) = (1  − t, t); 

s2(t) = (−t, 1 − t); 

s3(t) = (t − 1, −t); 
s4(t) = (t, t − 1). 

With this parametrization: � � 1 � 1 � 1 � 1dx + dy −1 + 1  −1 − 1 1 − 1 1 + 1  
= dt+ dt+ dt+ dt |x| + |y| (1 − t) +  t t + (1  − t) (1 − t) +  t t + (1  − t)C 0 0 0 0 

The first and the third summands are 0, and the second and fourth terms 
cancel each other, giving: � 

dx + dy 
= 0  |x| + |y|C 

2. (10.9:6) Writing the equation of the cylinder in complete square form: 

2a a
(x − )2 + y 2 = 

2 4


Thus looking from high above the xy-plane the picture looks like:


The parametrization of the cylinders’ intersection with the xy-plane is: 

a a a 
s�(t) =  cos t + , sin t, 0 

2 2 2 
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We need to lift it up to sit on the sphere: 
  

) =
�a a a 

s(t  cos t + , sin t, z(t)
2 2 2 

where z(t)  0 and 

�
 ,

≥
�   a a �2 a 2  a a 

cos t + + 
�

sin t
�
 + z(t)2 = a 

�
cos t +

�
+ z(t)2 = a 2 

2 2 2 2 2

This means, that


a √ 
z(t) =  √ 1  

2

− cos t

�Now

 
(y 2 , z2  , x2 ) · d(x, y, z) 

C �    2π a3 � sin t 
=  sin2 t, 2(1 − cos t), (cos t + 1)2)

�
 ·
�
− sin t, cos t, 

�� dt 
0 8 2(1 cos � − t) 

 
a3 �   2π 

3 sin t(cos t + 1)2 

= − sin t + 2 cos t(1 − cos t) +   
8 0 2(1 

 
− cos t)


  

�
dt


  a3 � 2π 
3 a3 � 2π a3 2π sin t(cos t + 1)2 

= − sin tdt + +  cos t(1  cos

�
 t)dt +  dt 

8 0 4 0 
−

8 

�
0 2(1 − cos t) 

Computing each of the integrals separately we get: 

�
a3 a3π 

= 0 +  π + 0 =  
4 4 

  
y x 

3. (C34:3) As per the question, f(x, y) =

�
 , . Therefore we can 
x2

−
 + y2 x2 + y
2 

write 


�
1 

φ(x, y) =

�
 (−y, x) · d(x, y) 

C x2 + y2 
 

As suggested in the exercise we will compute the integral along a specific path 
starting at (1, 0). For given (x, y) we can parameterize the path in two parts 
with s1 : [1, x] → 2 

R and s2 : [0, y] → 2 
R . (Here an interval [a,b] is understood 

as [b,a] if a > b.) 

s1(t) = (t, 0) 

s2(t) = (x, t) 
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With these notations: 
 

1 
φ(x, y) =  

�
(−y, x) · d(x, y)
� 2 

C x
2 + y

x 

0 y x y 

= − dt + 
�

dt = arctan 
t2 2

1 0 x
2 + t  x 

Finally, we can check that this is indeed the potential function for f(x, y): 

1 ∇φ(x, y) =  ( y, x) = f (x, y). 
x2 + y2 

−

4. (10.18:13) Note, that the function is not necessarily well defined in (0, 0). Thus 
we will fix our basepoint at (1, 0). Then given a point r(cos ϑ, sin ϑ) ∈ 2 

R , 
then an obvious path from (1, 0) to r(cos ϑ, sin ϑ) can be parametrized by 
s1 : [0, ϑ] → 2 

R and s2 : [1, r] → 2 
R with 

s1(t) = (cos t, sin t) 

s2(t) = t (cos ϑ, sin ϑ) 

For n = −1 

 

(r(cos ϑ,
� ϑ  r

φ  sin ϑ)) = a1n(cos t, sin t)
0

·(− sin t, cos t)dt+
�
 atn(cos ϑ, sin ϑ)·(cos ϑ, sin ϑ)dt 

1 

 r n+1

+ a tn
ar a 

= 0 dt = − 
1 n + 1  n + 1

Checking that it is a potential

�
 function: 

arn+1

∇ = ar n(cos ϑ, sin ϑ) 
n + 1  

For n = −1 we have  
 r  r a 1 

ψ(r(cos ϑ, sin ϑ)) = 
�

(cos ϑ, sin ϑ) · (cos ϑ, sin ϑ)dt = a 
�

dt = a log r 
1 t 1 t

Again checking that this is indeed a potential function: 

a ∇ψ(r(cos ϑ, sin ϑ)) = (cos ϑ, sin ϑ). 
r 

�
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5. (10.18:17,18) In this exercise �	  
y x

f(x, y) =  − ,
x2 + y2 x2 + y2 

�
10.18:17 We have computed on the recitation that 

y2  x2 

D1f2(x, y) = D 2f1(x, y) =  
−

(x2 + y2)2 

10.18:18 (Compare the results with 3) 

(a) We will consider the 3 cases one by one.	 First, for x = 0 we have, by 
definition, θ = π/2. Now when x = 0  

sin θ r sin θ y
tan θ = = = . 

cos θ r cos θ x 

and 
y −y

arctan = arctan = φ ∈ (−π/2, π/2). 
x −x 

For x > 0,  −π/2 < θ  = φ < π/2 and this corresponds directly with the 
definition of the arctan function. 
For x < 0,  it turns out that θ = φ + π because the angle between (x, y) 
and (−x, −y) is precisely π. 

(b) Using the derivation rule for the inverse function. If x > 0  

∂θ ∂ y 
(x, y) =  arctan 

∂x ∂x x 
y 1 y 

= − y =  
x2 1 + (  )

2 
−
x2 + y2 

x

∂θ ∂ y 
(x, y) =  arctan 

∂y ∂y x 
1 1 x 

= =  x 1 + ( y
 )

2 x2 + y2 
x

Similar argument works for x <  0 case. For x = 0 one computes the left 
and right derivatives, and see that they are both equal to: 

∂θ 1 
(0, y) = −  

∂x y 
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and

∂θ 

(0, y) = 0. 
∂y

∂θ ∂θ 
Hence for all (x, y), the relations in the exercise for and hold. This 

∂x ∂y 
proves that θ is a potential function for f on the set T . 
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