Solutions for PSet 8

1. (10.5:11) Parameterize the sides of the square C' by maps s; : [0,1] — R? by

sit) = (1—t1);
so(t) = (=t,1-1);
s3(t) = (t—1,-t);
s4(t) (t,t—1).

With this parametrization:
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The first and the third summands are 0, and the second and fourth terms

cancel each other, giving:
dr +dy
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2. (10.9:6) Writing the equation of the cylinder in complete square form:

2

_ %2 2 @
(z 2)+y 1

Thus looking from high above the zy-plane the picture looks like:
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The parametrization of the cylinders’ intersection with the xy-plane is:

s(t) = (% cost + %, g sint,O)



We need to lift it up to sit on the sphere:

s(t) = <g cost + g, g Sint,z(t)> :

where z(t) > 0 and

2 2
(et 5"+ (o) 07 = (ot +5) 0

This means, that
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Computing each of the integrals separately we get:
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. (C34:3) As per the question, f(z,y) = ( Y

2t Pt y2) . Therefore we can

write

o, y) = /C L (o) -day)

T2 + y2
As suggested in the exercise we will compute the integral along a specific path
starting at (1,0). For given (z,y) we can parameterize the path in two parts
with s; : [1,2] — R? and s, : [0,y] — R?. (Here an interval [a,b] is understood
as [b,al if a > b.)
si(t) = (t0)
SQ(t) - (ZE, t)
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With these notations:

b(e,y) = /C 1y day)
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Finally, we can check that this is indeed the potential function for f(z,y):
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. (10.18:13) Note, that the function is not necessarily well defined in (0,0). Thus
we will fix our basepoint at (1,0). Then given a point r(cosd,sind) € R
then an obvious path from (1,0) to r(cos,sin?) can be parametrized by
s1:10,9] — R? and sy : [1,7] — R? with

s1(t) = (cost,sint)
So(t) = t(cos¥,sind)

For n # —1
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Checking that it is a potential function:

ar™t!

= ar"(cos ¥, sin 1)
n+1

For n = —1 we have
T T 1
(r(cosd,sind)) = / %(cos ¥, sind) - (cos ¥, sin)dt = a/ ;dt =alogr
1 1
Again checking that this is indeed a potential function:

Vi(r(cosdd,sin})) = a (cos ), sin ).
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. (10.18:17,18) In this exercise

_(__Y z
fen = (-t )

10.18:17 We have computed on the recitation that

y? — 12

Dy fo(w,y) = Dafi(x,y) = m

10.18:18 (Compare the results with 3)

(a) We will consider the 3 cases one by one. First, for x = 0 we have, by
definition, § = 7/2. Now when x # 0

sinf  rsinf oy
tanf = = =Z.
cos rcosf «x

and

arctan © = arctan —2 = o€ (—n/2,7/2).
T —x

For x > 0, —w/2 < § = ¢ < m/2 and this corresponds directly with the
definition of the arctan function.

For z < 0, it turns out that § = ¢ + 7 because the angle between (z,y)
and (—x, —y) is precisely .

(b) Using the derivation rule for the inverse function. If z > 0
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Similar argument works for x < 0 case. For x = 0 one computes the left
and right derivatives, and see that they are both equal to:
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and
00

00

Hence for all (x,y), the relations in the exercise for I and e hold. This
€z )
proves that 6 is a potential function for f on the set T
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