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Solutions for PSet 1 

1. (1.10:22) 

(a) Let S = {x1, . . . , xk} ⊂ V . As L(S) = span(S), we can write: 

k

L(S) = {y : y ∈ V where y = cixi} ci is scalar 
i=1 

For cj = 1, ci = 0, i =� j, we have y = i cixi = xj ∈ L(S). Thus xj ∈ S 
implies that xj ∈ L(S) and S ⊆ L(S). 

(b) As T is a subspace of linear space V , T is a non-empty subset of V and 
T satisfies all closure axioms. Since S ⊆ T , we know (using the notation 
above) that {x1, . . . , xk} ⊆ T . Now let y ∈ L(S). Then by definition 
there exist ci ∈ R, for i = 1, . . . , k, such that y = cixi. By the closure � i 
axioms, cixi ∈ T and thus L(S) ⊆ T .i 

(c) Since L(S) is a subspace of V , one direction is obvious. 

Now, suppose by contradiction that S is a subspace of V but S = L(S). 
Since S ⊂ L(S), this implies there exists y ∈ L(S) − S. As y ∈ L(S), 
there exist ci ∈ R, i = 1, . . . , k, such that y = As S is a subset i cixi. 
and thus closed under addition and scalar multiplication, y ∈ S. This 
implies a contradiction and proves the result. 

(d) Assume S = {x1, . . . , xk}, T = {x1, . . . , xn} where n ≥ k. Let y ∈ L(S). 
Then y = 

�k cixi for some ci ∈ R. For cj = 0 for all j = k + 1, . . . , n,�k
i=1 � n
y = cixi + cj xj . Thus, y ∈ L(T ).
i=1 j=k+1 

(e) As S and T are subspaces of V , they are both closed under addition and 
scalar multiplication. Let x, y ∈ S ∩ T and c ∈ R. As cx + y ∈ S and 
cx + y ∈ T we see cx + y ∈ S ∩ T . Thus S ∩ T is closed under addition 
and multiplication. Therefore S ∩ T is a subspace of V . 

(f) Assume S = {x1, . . . , xk}, T = {y1, . . . , yn}. Let z ∈ L(S∩T ). Then there 
exist cj ∈ R and zj ∈ S ∩ T such that z = cj zj . Since zj ∈ S ∩ T ,� j 

cj zj ∈ L(S), L(T ). Thus, z ∈ L(S) ∩ L(T ).j 

(g) Let S = {v1, v2}, T = {v3, v4} where vi ∈ R3 are each vectors such that 
v3, v4 ∈/ L(S) and v1, v2 ∈/ L(T ). We can further choose these vectors 
such that L(S) and L(T ) are both planes in R3 by making sure each 
pair of vectors is linearly independent. By construction, S ∩ T = ∅ but 
L(S) ∩ L(T ) is a line in R3 . So L(S) ∩ L(T ) =� L(S ∩ T ). 
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2. (1.13:11) In the linear space of all real polynomials, define (f, g) = 
0 
∞ 

e−tf(t)g(t) dt. 

(a) Let f, g be polynomials. Then fg = n
i=0 aix

i for some n ∈ N, ai ∈ R.

By definition,
 � n∞ � 

(f, g) = e−t ait
i dt. 

0 i=0 

Using integration by parts, we see that for any fixed n ∈ N, 

∞ � ∞ ∞ 

tn e−t dt = −tn e−t�∞ 
+ ntn−1 e−t dt = ntn−1 e−t dt. 

0 
0 0 0 

Iteratively integrating by parts n times, we see 

∞ ∞ 

tn e−t dt = n! e−t dt = n!. 
0 0 

(To be truly thorough, one should prove this by induction but we leave 
that to you!) 

Thus, for fg = i
n 
=0 aix

i , 

n

(f, g) = i!ai < ∞. 
i=0 

(b) 

∞ ∞ 

(xn, xm) = e−ttntm dt = e−ttm+n dt 
0 0 

∞ 

= (m + n) e−ttm+n−1 dt 
0 

∞ 

= (m + n)(m + n − 1) e−ttm+n−2 dt (by iteratively integrating by parts) 
0 

∞ 

= (m + n)(m + n − 1) 1 e−t dt· · · 
0 

= (m + n)(m + n − 1) 1 1 = (m + n)!· · 
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(c) If g(t) orthogonal to f(t), then: 
∞ 

(f, g) = e−t(a + bt)(1 + t) dt �0 � �∞ ∞ ∞ 
2 = ae−t dt + (a + b) te−t dt + b t e−t dt = 0 

0	 0 0 

= a + a + b + 2b = 2a + 3b = 0 ⇒ 

This means that 2a = −3b or polynomials g(t) = a 1 − 
3
2 t satisfy the 

requirement of orthogonality to f(t) = 1 + t. 

3. (2.4:29) Let V denote the linear space of all real functions continuous on the 
interval [−π, π]. Let S be that subset of V consisting of all f satisfying:� π � π	 � π 

f(t) dt = f(t) cos t dt = f(t) sin t dt. 
−π −π	 −π 

(a) By definition,	 S ⊆ V . As integration is a linear operation, it can be 
shown that for f1, f2 ∈ S and a ∈ R,� π � π	 � π 

f1(t)+ f2(t) dt = (f1(t)+f2(t)) cos t dt = (f1(t)+f2(t)) sin t dt 
−π −π −π 

and � π � π � π 

af(t) dt = af(t) cos t dt = af(t) sin t dt. 
−π −π	 −π 

Thus, S is closed under addition and scalar multiplication. 

(b)	 S contains the functions f(x) defined above if those functions are real 
and are a part of V . Thus we have to show that f(x) = cos(nx) and 
f(x) = sin(nx) satisfy the integral equations defining V . Start with 
f(x) = cos(nx):� π 1 

cos(nt) dt = [sin(π) − sin(−π)] = 0 � π 
−π	 n � π 

cos(nt) cos(t) dt = 0.5 [cos(nt + t) + cos(nt − t)] dt = 0 �−π
π	 �−π

π 

cos(nt) sin(t) dt = 0.5 [sin(nt + t) − sin(nt − t)] dt 
−π	 −π 

= 0.5 cos(−(n + 1)π) − 0.5 cos((n + 1)π) 

+0.5 cos((n − 1)π) − 0.5 cos(−(n − 1)π) = 0 

(for both even and odd n) 
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A similar derivation makes the case for f(x) = sin(nx). 

(c)	 S is infinite dimensional if its basis has an infinite number of independent 
elements. We can prove it is infinite dimensional by proving it is not 
finite dimensional. As fn(x) = cos(nx), fn(x) is orthogonal to fm(x) for 
all n > 2 = m > 2. Therefore there is no finite basis set of independent 
elements that can span S. 

(d) Using trigonometric identities, observe that for g(x) ∈ T (V ) one has � π � π	 � π 

g(x) = f(t)dt + cos(x) cos(t)f(t)dt + sin(x) sin(t)f(t)dt. 
−π −π	 −π 

Thus, T (V ) is three dimensional with basis {1, cos(x), sin(x)}. (Note that 
since f ∈ V , the three integrals are all elements of R.) 

(e) Based on the identity shown in the previous part of the problem,	 g = 
T (f) = 0 if and only if the three integrals are all zero. Thus, N(T ) is 
precisely equal to the subspace S. 

(f) Using the hint, observe	 that f(x) = c1 + c2 cos x + c3 sin x for some 
c1, c2, c3 ∈ R. Now evaluating the three integrals that describe T (f) 
we observe 

T (f) = cf(x) = 2πc1 + πc2 cos x + πc3 sin x. 

Thus, if c1 = 0 then f(x) = c2 cos x + c3 sin x and c = π (here c2, c3 are 
arbitrary real numbers). If c1 = 0, then c2 = c3 = 0, f(x) is a constant 
function and c = 2π. 

(g) Let � 

fj (x) = 
1 
0 

if x ∈ [−1/j, 1/j] 
otherwise 

Then fj → 0 strongly in L2 as 

|fj − 0|2dx = 4/j2 → 0. 
R 

Observe, however, that fj → f∞ pointwise, where 

1	 if x = 0 
f∞(x) = 

0	 otherwise 

Notice here that fj actually also converges strongly to f∞ in L2, so though 
we’ve found a solution it might not be fully satisfying. A harder question 
to solve would be the following: Find a sequence of functions fj such 
that NO subsequence of fj converges pointwise to a function but fj still 
converges strongly in L2 to a function. 
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