
Exam 1 Solutions 

Problem 1. (10 points) Consider the transformation T : 3 
R → 3 

R such that 
T (1, 0, 0) = (2, 1, 4), T (0 , 1, 0) = (4, 3, 6), T (0 , 0, 1) = (0, −1, 2). 

1. Determine the null space of T . 

2. If A is the plane formed by span({(2, 5, −3), (−1, −1, 1)}), write T (A) in para­
metric form. 

Solution To determine the null space of T , we need to find all vectors v such that 
T v = 0. This is equivalent to solving a system of equations. Note that the matrix 
representation of T is  ⎛

2 4  0
⎞
 

 ⎝ 1 3 − 1  . 
4 6  2

⎠
 

To solve the system, we row reduce the augmented matrix 
 ⎛

2 4  0  | 0

 1 3 − 1 | 0 

⎞
 ⎝ ⎠ .


4 6  2  | 0


This process gives 
    ⎛
1 2  0  | 0 1 0  2  

 
| 0 

0 1 − 1 |  ⎝ 0 

⎞
 

⎞
→ 

⎛
 0 1 −1 | 0  . 

0 2 − 2 | 0 

⎠ ⎝
0 0  0 | 0 

⎠

It follows that solutions are of the form v1 + 2v3 = 0 and v2 − v3 = 0. That is, 

 N(T ) = { v ∈ 3
R | v = t(−2, 1, 1) for t ∈ R}. 

Now, to find T (A) we need to determine span{T (2, 5, −3), T ( −1, −1, 1)}. Matrix 
multiplication immediately gives 

T (2, 5, −3) = (24, 20, 32); T (−1, −1, 1) = (−6, −5, −8). 

Notice that both of these vectors are multiples of (6, 5, 8). Thus, T (A) is a line 
through the origin spanned by that vector. In parametric form we have 

T (A) = { v ∈ 3 
R | v = t(6, 5, 8) for t ∈ R}. 
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Problem 2. (10 points) Let 
 {
(sin t, − cos t) t ∈ [0, π]

F (t) =  
(sin t, cos t + 2)  t ∈ (π, 2π] 

1. Find F ′(π), if it is well defined. 

2. Find F ′′(π), if it is well defined. 

3. Determine κ(t) everywhere it is defined. 

Solution Away from t = 0, π, 2 π F  has first and second derivatives in t. Notice 
that  {

(cos t, sin t) t ∈ (0, π) 
F ′(t) =  

(cos t, − sin t) t ∈ (π, 2π) 

and  {
(− sin t, cos t) t 

F ′′(t) =  
∈ (0, π) 

. 
(− sin t, − cos t) t ∈ (π, 2π) 

I want to highlight here that many of you wrote something like what was above but 
with closed brackets. Remember the derivative definition requires a left and right 
hand limit! 

Now, 

lim F ′(t) = (cos π, − sin π) = (−1, 0) = (cos π, sin π) = lim F ′(t). 
t→π+ t→π− 

Thus, F ′(π) = (−1, 0). Also, 

lim F ′′(t) = (− sin π, − cos π) = (0, 1) = (0, −1) = (− sin π, cos π) = lim F ′′(t). 
t→π+ t→π− 

Therefore, F ′′ is not defined at t = π. 
The final part of this problem can be easily solved if you notice that F is carving 

out two portions of two different circles of radius equal to one. Thus κ(t) = 1  
everywhere it is defined. 

Problem 3: (10 points) Let f(x, y, z) = x 2 + y2 + z2 . Prove f is differentiable at 
(1, 1, 1) with linear transformation T (x, y, z) = 2x + 2y + 2z. 

�
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Solution To prove f is differentiable with total derivative T as described we need 
to show 

f(v + (1, 1, 1))  f(1, 1, 1)  T (v)
lim	

− −
= 0. 

||v||→0	 ||v|| 
Now observe that 

 f(v+(1, 1, 1))−f(1, 1, 1)−T (v) = (v +1)2
1 +(v2+1)2+(v3+1)2−3−2v1−2v2−2v 2

 = v2
1+v2+v2

3 3. 

Thus 

f(v + (1, 1, 1))  
lim

− f(1, 1, 1)
 

− T (v) 
= lim 

||v||2 

= lim v  = 0.

||v||→0 ||v|| ||v||→0 ‖|v|| ||v||→0


|| ||

It follows that f is differentiable at (1, 1, 1) with the total derivative as described. 

Problem 4. (15 points) Consider the set L( 3 
R , 2

R ) of all linear maps L from 3 
R to 

2 
R and define addition of L, K ∈ L( 3 

R , 2
R ) the following way: 

(L + K)(v) = L (v) +  K(v) (v ∈ 3
R ) 

Define multiplication by a constant c as: 

(cL)(v) = c (L(v)) (v ∈ 3
R ) 

1. Are the linear maps L(x, y, z) = (x, 0), K(x, y, z) = (y, 0), N(x, y, z) = (x, y) 
linearly independent? Prove it either way. 

2. Find a basis for L( 3 2
R , R ). 

3. What is the dimension of L( 3 , 2
R R )? 

Solution


1. The given maps are linearly independent. Here is why.	 Suppose c1L + c2K + 
c3N = 0 where here 0 is the zero transformation. That is, 0(x, y, z) = (0, 0) for 
all (x, y, z) ∈ 3 

R . Then (c1L+c2K +c3N)(x, y, z) = (c1x+c2y +c3x, c3y). This 
implies c3 = 0 and thus c1x + c2y = 0 for all x, y, ∈ R. Therefore, c1 = c2 = 0  
as well. Thus, the only linear combination of the three maps that gives the 
zero map has all coefficients equal to zero. 
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2. A good basis can be given by the 6 functions L1
1(x, y, z) = (x, 0), L2

1(x, y, z) =  
(0, x), L1 L2

2(x, y, z) = (y, 0), 2(x, y, z) = (0, y), L1
3(x, y, z) = (z, 0) and L2

3(x, y, z) =  
(0, z). 

To check that these maps are linearly independent suppose, that: 

α1L1 2 2 1 1 2 2 1 1 2 2
1 1 + α1L1 + α2L2 + α2L2 + α3L3 + α3L3 = 0  

for some numbers α
ji (1 ≤ i ≤ 3, 1 ≤ j ≤ 2). We would like to prove that all

αi


j’s are equal to 0. Remember, that 0 in this vector space was the function

defined as 0(x, y, z) = (0, 0). Then the above equation translates to 

   (α1   
1L

1
1+α2L2

1+α1
2L

1
1 2+α2L2+α1L1

3+α2L2
2 2 3 3 3	)(x, y, z) = (α1x+α1 1 2 2 2

1 2y+α3z, α1x+α2y+α3z) = (0, 0)

for every (x, y, z) ∈ 3 
R . Substituting (x, y, z) = (1, 0, 0) to the above equation 

gives: 
(α1 2

1, α1) = (0, 0) 

which means that α1 1 
1 = α2 = 0. Similarly substituting (x, y, z) = (0, 1, 0) gives 

α1 = α2 
2 2	 = 0, finally (x, y, z) = (0, 0, 1) gives α1 

3 = α2 
3 = 0. This proves that 

the linear maps L
ji (1 ≤ i ≤ 3, 1 ≤ j ≤ 2) were linearly independent.


To see that the maps Lj
i
 (1 ≤ i ≤ 3, 1 ≤ j ≤ 2) also generate the vector


space of linear maps take an arbitrary linear map K : 3  2 
R R . Let us denote 

the projections from 2 1 
R R

→
→ to the first coordinate by π1 and to the second 

coordinate by π2. Thus π 1(x, y) =  x and π2(x, y) =  y. Now K (x, y, z) 
R

∈ 2 
R , 

thus the terms π1(K(x, y, z)) ∈  and π2(K(x, y, z)) ∈ R are the first and 
second coordinates of K(x, y, z), respectively. Consider the linear function: 

L	 ,  = π1(K(1 0, 0))L1
1 + π2(K(1, 0, 0))L2

1 + 

+ π (K(0, 1, 0))L1 + 2
1 2  π2(K(0, 1, 0))L2 + 

+ π 1
1(K(0, 0, 1))L3 + π2(K(0, 0, 1))L2

3 

then 
 

L(x, y, z) =  
(
π (K(1, 0, 0))L1 + π (K(1, 0, 0))L2

1 1 2 1+ 

+ π1(K(0, 1, 0))L1
2 + π2(K(0, 1, 0))L2

2 + 
 

+	 π1(K(0, 0, 1))L1 2
3 + π2(K(0, 0, 1))L3 

)
(x, y, z) 

= (π1(K(1, 0, 0)x + K(0, 1, 0)y + K(0, 0, 1)z), 

π2(K(1, 0, 0)x + K(0, 1, 0)y + K(0, 0, 1)z)) 

= (π1(K(x, y, z)), π2(K(x, y, z))) = K(x, y, z). 
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Thus we could express any linear map K in  terms of Lj
i (1 ≤ i ≤ 3, 1 ≤ j ≤ 2). 

So they indeed span the space. 

3. There is a 6 element basis, thus the dimension is 6. 

Problem 5. (15 points) Consider the function f : 2 
R → R that satisfies the follow­

ing conditions: 

1. For all fixed x0 ∈ R the function fx0 = f(x0, y) :  R → R is continuous and; 

2. For all fixed y y
R 0 

0 ∈  the function f = f(x, y0) :  R → R is continuous and; 

3. For all fixed x0 ∈ R the function fx0 is monotonically increasing in y, i.e. if 
y > y′ then, f(x0, y) > f(x0, y

′). 

Prove f is continuous. 

Solution This solution will appear later. You’ll have another chance to work on it. 
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