
Practice Exam 1 Solutions 

Problem 1. Let A be an m × n matrix and r be the rank of A. 

1. Describe the dimension of the solution space of the equation Ax = 0 in terms 
of m, n, r. 

2. Suppose there exists c such that Ax = c does not have a solution. What can 
you say about m, n, r? 

3. If A is invertible, what is the relationship between m, n and r? 

Solution


1. Since	 A : n → m 
R R and rank(A) =  r the rank-nullity theorem implies 

dim(N(A)) = n − r. 

2. The statement implies that dim(A( n
R )) = m.	 That is, rank(A) = m. Thus, 

r < m. 

3. If A is invertible then m = n = r. This follows as only square matrices are 
invertible, and any invertible matrix must have full rank. 

Problem 2. Let {x1, x2, · · ·  , xn} be a basis for the vector space V . Consider the 
set { 

�n   
i=1 c1ixi, · · ·  , 

either way. 

�n 
i=1 cnixi} for cij ∈ R. Is this still a basis for V ? Prove it 

Solution The new set may or may not be a basis, and depends entirely on the 
coefficients cji (as it should). We will show that the new set is a basis if and only if 
the matrix C corresponding to the entries cji is invertible. 

Suppose there exist dj ∈ R for j = 1, . . . , n  such that 
  

n  n�
j

�
  

dj 

�
cjixi = 0. 

=1 i=1 

�

Then immediately we have 
  

n  
�

n  
�� �

djcji xi = 0  
i=1 j=1 

� �
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and thus by the independence of the xi, 

�n 
j=1 dj cji = 0 for each i. The independence 

of the new set follows if and only if this implies dj = 0 for each j. Notice that the 
situation is reduced to solving a system of n equations with n variables. In fact, if 
C is the matrix such that cji is the entry in the ith row and jth column, then we 
wish to solve the system 

Cd = 0 

where d ∈ n 
R .	 Obviously there exist d = 0 exactly when rank(C) < n, or when C 

is not invertible. Thus, the new set is a basis precisely when C is invertible. 

Problem 3: Let A, B and C be three vectors (or points) in 3 
R . Let M be the 3 × 3 

matrix that has A , B and C as its rows (from top to bottom). 

1. Show that | det M | ≤ ||A||||B||||C||. 
2. Show that if	 {A, B, C} is an orthogonal set then det M = ±||A||||B||||C||. 

When does one get a + and when a −? 

3. Is it true that if | det M | = ||A||||B||||C|| then {A, B, C} is orthogonal? 

Solution For all three parts, we use the fact that A · (B × C) = det (A, B, C). In 
fact 

A · (B × C) = || A||||B × C|| cos θ = ||A||||B||||C|| cos θ sin φ 

where 0 ≤ θ ≤ π is the angle between A and B × C and 0 ≤ φ ≤ π is the angle 
between B and C. Notice the absolute value is maximized precisely when θ = 0, π  
and φ = π/2. 

1. Follows immediately from work above. 

2. First, notice sin φ = 1  iff  B is orthogonal to C. Now, |  cos θ| = 1  iff  B × C and 
A are parallel; moreover cos θ = ±1 when A = ±λB × C for λ ∈ + 

R . That is, 
cos θ = 1  if  B × C points in the same direction as A and is −1 in the other 
case. So the + comes when {A, B, C} is an ordered orthonormal set and the 
− comes when {A, C, B} is an ordered orthonormal set. 

3. This is obviously true based on the work outlined above. 

Problem 4. Let L be a map from 3 
R to 2 

R for which 

L(u + v) = L (u) +  L(v) (u, v ∈ 3
R ). 
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1. Show that L(nv) = nL (v) for any integer n and v ∈ 3
R ; 

2. Show that L( 1 1 
n v) =  3

R
n L(v) for any integer n and v ∈ ; 

3. Show that L(m v) =  n  L(v) for any rational number n and v  3
R ;

n m m ∈
4. Conclude that if L is continuous, then L must be linear. (We say L is contin­

uous at y if ||L(x) − L(y)|| → 0 when ||x − y|| → 0.) 

Solution


1. First, we observe that L(0) = L(0 + 0)  =  L(0) + L(0) = 2L(0) which implies 
L(0) = 0. Moreover, 0 = L(0) = L(x + (−x)) = L(x) +  L(−x) and thus 
L(−x) = − L(x) for all x ∈ 3 

R . 

We prove the first statement by induction for n ∈ + 
Z and then use the work 

above to prove for all n ∈ Z. As L (v) = 1 ·  L(v) we begin by assuming 
L(nv) = nL (v) and prove that L((n + 1)v) = (n + 1)L(v). This is immediate 
as L((n + 1)v) = L (nv + v) = L (nv) + L (v) by the assumption on L. As  
L(nv) = nL (v), we get L((n + 1)v) = nL (v) + L (v) = (n + 1)L(v). 

2. Consider L(v) = L (n · 1 
 v) = nL ( 1 

 v) by the work above (for n = 0). But then 
n n

1 L(v) = L ( 1 v).
n n 

3. First observe that n v = n( 1 
 v). Thus, using the two parts above we see 

m m

n 1 1 1 n 
L( v) = L (n v) = nL ( v) = n L(v) =  L(v). 

m m m m m 

4. Consider any c ∈ R and let {ri} be a sequence of rational numbers such that 
ri → c. Then ||riv − cv|| = |ri − c|||v|| and thus limi ||r→∞ iv − cv|| = 0.  It  
follows that 

cL(v) = lim riL(v) = lim L(riv) = L (cv)
i→∞ i→∞ 

Thus, for all c ∈ R, L(cv) = cL (v) and thus L is linear. 

Problem 5. Consider the function 
 �
(x2 + y2) sin 1 if x2 + y2 = 0,

f(x, y) =  x2+y2 

0  if x = y = 0,  

�

�
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1. Show that the partial derivatives of f are discontinuous at (0, 0); 

2. Show that the partial derivatives of	 f are not bounded in any balls around 
(0, 0); 

3. Show that f is differentiable at (0, 0). 

Solution We solve the first two parts only for the x derivative as the symmetry of 
the function in x and y will determine the same result for the y derivative. First, 
we determine f ′(0; e1). (This is really ∂f/∂x(0, 0).) By definition 

f(h, 0) − f(0, 0)	 1 
f ′(0; e1) = lim	 = lim h2 sin = 0. 

h→0 h h→0 h2 

Thus 
∂f 

(0, 0) = 0. 
∂x

Now consider x � = 0, and determine 
∂x

(x′ = 0, y  ∂f ′ , 0). By the differentiability of f 
away from x = y = 0 we can simply calculate 

∂f	 2 
(x ′ , 0) = 2x ′ sin(1/x′2) − cos(1/x′2). 

∂x	 x′ 

Observe that 
2 

lim 2x ′ sin(1/x′2) − cos(1/x′2) =  −∞. 
x�→0	 x′ 

Proving this in detail requires more work than I give here (though you should be 
able to do it quite easily!). You simply use the boundedness of the sin, cos functions 
and the behavior of the linear and rational terms. 

And now we answer the first two questions. For any δ >  0, M  >  0 there exists 
(x′ , 0) ∈ B2(0) such that |∂f (x′ , 0)| > M . Simply choose x′ such that cos(1/x′2) = 1δ	 ∂x

and x′ ≤ min{δ/4, 2/M }. Thus, ∂f is unbounded in any ball around (0, 0).
∂x 

Also, we see ∂f is not continuous at (0, 0). This follows since, for ε = M = 1 and 
∂x 

any δ >  0 there exists (x′ , 0) ∈ B2(0) such that |∂f (x′ , 0) − ∂f (0, 0)| = |∂f (x′ , 0)| >δ	 ∂x ∂x ∂x

1 =  ε. 
Finally, we show that f is actually differentiable at (0, 0). It is enough to show 

there exists a linear transformation T such that 

f(x, y) − f(0, 0) − T (x, y)
lim	 = 0. 

||(x,y)||→0 ||(x, y)|| 
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We provide the candidate T (x, y) = 0 and show it works. (This is the only candidate 
as ∇f(0, 0) = 0.) Notice ||(x, y)||2 = x2 + y2 . For ease of notation, we denote this 
value as r2. Now,  f(x, y) =  r2 sin(1/r2) and thus 

f(x, y) − f(0, 0) − T (x, y) r2 sin(1/r2) 
= = r sin(1/r2). ||(x, y)|| r 

Now 0 ≤ |r sin(1/r2)| ≤ |r| for all r ∈ R. Thus, the squeeze theorem implies 
limr→0 r sin(1/r2) = 0. This proves f is differentiable at (0, 0). 
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