EXAM 1 PRACTICE MATERIALS

- (1) Let A be an $m \times n$ matrix and r be the rank of A.
 - (a) Describe the dimension of the solution space of the equation $A\mathbf{x} = \mathbf{0}$ in terms of m, n, r.
 - (b) Suppose there exists \mathbf{c} such that $A\mathbf{x} = \mathbf{c}$ does not have a solution. What can you say about m, n, r?
 - (c) If A is invertible, what is the relationship between m, n and r?
- (2) Let $\{x_1, x_2, \dots, x_n\}$ be a basis for the vector space V. Consider the set $\{\sum_{i=1}^n c_{1i}x_i, \dots, \sum_{i=1}^n c_{ni}x_i\}$ for $c_{ji} \in \mathbb{R}$. Is this still a basis for V? Prove it either way.
- (3) Let A, B and C be three vectors (or points) in \mathbb{R}^3 . Let M be the 3×3 matrix that has A, B and C as its rows (from top to bottom).
 - (a) Show that $|\det M| \le ||A|| ||B|| ||C||$.
 - (b) Show that if $\{A, B, C\}$ is an orthogonal set then $\det M = \pm ||A||||B||||C||$. When does one get a + and when a -?
 - (c) Is it true that if $|\det M| = ||A||||B||||C||$ then $\{A, B, C\}$ is orthogonal?
- (4) Let L be a map from \mathbb{R}^3 to \mathbb{R}^2 for which

$$L(u+v) = L(u) + L(v) \qquad (u, v \in \mathbb{R}^3).$$

- (a) Show that L(nv) = nL(v) for any integer n and $v \in \mathbb{R}^3$;

- (b) Show that $L(\frac{1}{n}v) = \frac{1}{n}L(v)$ for any integer n and $v \in \mathbb{R}^3$; (c) Show that $L(\frac{m}{n}v) = \frac{n}{m}L(v)$ for any rational number $\frac{n}{m}$ and $v \in \mathbb{R}^3$; (d) Conclude that if L is continous, then L must be linear. (We say L is continuous at y if $||L(x) - L(y)|| \to 0$ when $||x - y|| \to 0$.)
- (5) Consider the function

$$f(x,y) = \begin{cases} (x^2 + y^2) \sin \frac{1}{x^2 + y^2} & \text{if } x^2 + y^2 \neq 0, \\ 0 & \text{if } x = y = 0, \end{cases}$$

- (a) Show that the partial derivatives of f are discontinuous at (0,0);
- (b) Show that the partial derivatives of f are not bounded in any balls around (0,0);
- (c) Show that f is differentiable at (0,0).

MIT OpenCourseWare http://ocw.mit.edu

18.024 Multivariable Calculus with Theory Spring 2011

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.