EXAM 2 PRACTICE MATERIALS

Definitions and Theorems

- (1) Let $\mathbf{f}: \mathbb{R}^n \to \mathbb{R}^m$ be a vector field. State what it means for \mathbf{f} to be differentiable.
- (2) Assume **f** as above is differentiable. Give the definition for D_k **f**.
- (3) Let $\mathbf{h}: \mathbb{R}^n \to \mathbb{R}^m$ be defined such that $\mathbf{h}(\mathbf{x}) = \mathbf{g}(\mathbf{f}(\mathbf{x}))$ where $\mathbf{g}: \mathbb{R}^k \to \mathbb{R}^m$, $\mathbf{f}: \mathbb{R}^n \to \mathbb{R}^k$.

State the chain rule in this generality.

Then use more appropriate notation to describe the specific case when n=m=1 and $k\neq 1$.

Do the same for when n = k = 1 and $m \neq 1$.

- (4) State the implicit function theorem for scalar fields.
- (5) State the second derivative test for $f: \mathbb{R}^2 \to \mathbb{R}$.
- (6) State Taylor's Theorem for $f: \mathbb{R}^2 \to \mathbb{R}$.
- (7) State the two fundamental theorems of calculus for line integrals.
- (8) State the necessary and sufficient condition for a vector field to be a gradient vector field on an open, convex $S \subset \mathbb{R}^n$. Now state a necessary and sufficient condition for a vector field to be a gradient field when S is open and connected.
- (9) Define a bounded set of content zero.
- (10) State the definition of an integrable function on a rectangle in \mathbb{R}^2 .
- (11) State Fubini's Theorem.

2

Problems

- (1) Let $f: \mathbb{R}^2 \to \mathbb{R}$ be a scalar field. For each of the following questions, answer "yes" or "no". If the answer is "yes", cite a theorem or give a brief sketch of a proof. If the answer is "no", provide a counterexample.
 - (a) Suppose $f'(\mathbf{a}; \mathbf{x})$ exists for all $\mathbf{x} \in \mathbb{R}^2$. Is f continuous at \mathbf{a} ?
 - (b) Suppose $D_1 f, D_2 f$ both exist at **a**. Does $f'(\mathbf{a}; \mathbf{x})$ exist for all $\mathbf{x} \in \mathbb{R}^2$?
 - (c) Suppose f is differentiable at \mathbf{a} . Is f continuous at \mathbf{a} ?
 - (d) Suppose $D_1 f$, $D_2 f$ both exist at **a** and are continuous in a neighborhood of **a**. Is f continuous at **a**?
- (2) Let $\mathbf{f}: \mathbb{R}^2 \to \mathbb{R}^2$ such that $\mathbf{f}(x,y) = (x^2 + y, 2x + y^2)$. Find $D\mathbf{f}$ and determine the values of (x,y) for which \mathbf{f} is NOT invertible. Given that \mathbf{f} is invertible at (0,0), let \mathbf{g} be its inverse. Find $D\mathbf{g}(0,0)$.
- (3) Let $f(x,y,z)=2x^2y+xy^2z+xyz$ and consider the level surface f(x,y,z)=4. Find the tangent plane at (x,y,z)=(1,1,1). Explain why it is possible to find a function g(x,y), defined in a neighborhood of (x,y)=(1,1) such that a neighborhood of (1,1,1) on the surface f(x,y,z)=4 can be written as a graph (x,y,g(x,y)).
- (4) Find all extreme values for $f(x, y, z) = x^2 + 2y^2 + 4z^2$ subject to the constraint x + y + z = 7. Justify whether the extreme values are maximum or a minimum.
- (5) Let $\mathbf{f}: \mathbb{R}^n \to \mathbb{R}^n$ be a differentiable vector field with $\mathbf{f} = (f_1, f_2, \dots, f_n)$. We define the divergence of \mathbf{f} such that

$$div(\mathbf{f}) = \sum_{i=1}^{n} \frac{\partial f_i}{\partial x_i}.$$

Let $g: \mathbb{R}^n \to \mathbb{R}$ be a smooth scalar field. Prove that

$$div(\nabla g) = \sum_{i=1}^{n} \frac{\partial^2 g}{\partial x_i^2}.$$

(6) Assume f, g are integrable on the rectangle $Q \subset \mathbb{R}^2$ and let $a, b \in \mathbb{R}$. Given the linearity of the integral for step functions, prove $\int \int_Q (af + bg) dx dy = a \int \int_Q f dx dy + b \int \int_Q g dx dy$.

MIT OpenCourseWare http://ocw.mit.edu

18.024 Multivariable Calculus with Theory Spring 2011

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.