18.02 Problem Set 4, Part II Solutions

1. (a) The graphs of x — Fy(x,t) = cos?(x — 2t) for t = —1,0,1 all have
the same sinusoidal shape f(u) = cos?(u) shifted along the x-axis.

(b) This would represent the string displaced into the shape f and then
this wave form traveling down the string over time with the ‘wave speed’
= 2 (linear units/unit time). In physics this is called a traveling wave (not
surprisingly).

The applet shows the same shape f translated along the y (= time) axis —
that is, if you take a trace curve on the surface in any plane y = constant,
you get one of the wave forms f shifted along the x-direction. (Note that
the surface graph in 3D appears static, until one remembers that the y-axis
represents time here; in the language of physics, this would be called a graph
in the space-time domain.)

2. We have two surfaces defined by

2= () =2~
z=g(z,y) =2+ (z —y)*

a. Let (z,y, 2) be in both surfaces. Then z = f(x,y) and z = g(x,y) which
gives

or
22 —y? =2+ 2% — 2zy + o

which reduces to
—2u% + 2xy = 2
or

1
r=y+—
Y

assuming y # 0.

When one does an intersection problem, it is possible to get extraneous solu-
tions. Let’s plug back in our formula for x and see if all the points we found
do give rise to common points between surfaces f and g.

-y =y+y ) -y =24y =2+ (y+y ) -y’ =2+ (z—y)’



So this checks out. To parameterize our curve, we choose y =t and then get

r = t+t !
=t
2 = 24172

(b) First we find a normal to the plane 77 tangent to surface f at (2,1, 3):

fz = 2

fy = 2y
£(2,1) = 4
f21) = -2

We may then use the formula for the normal

ﬁl = <fx(2> 1)vfy(2v 1)7 _1> - <47 -2, _1>'

We find a normal to the plane 75 tangent to the surface g at (2,1, 3) by the
same method:

gz = 2(z—y)
9y = —2(z—y)
9:(2,1) = 2
gy(2, 1) = -2

The normal is

ﬁ2 = <g:r(27 1);gy<27 1)? _1> = <27 _27 _1>'

Then
where
71+ o +44+1 13
cosf = — — = = .
7] - 2] V2IV9 3v/21
So
0 = cos™? <1—3> ~ .33rad ~ 19de
Wil ) g.

(c) 7(t) = {t+t 1, t,2+t72). So

7)) =(1—t721,-2t7°).
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The point Py = (2,1,3) = 7(t) for t = 1. So the velocity vector of the
parameterization as it passes through F is

(1) = (0,1, -2).

We think of this vector as being based at point Py, pointing along the curve 7.
Given this, we know its initial point lies in the planes 77,7;. What remains
is to prove that the vector is parallel to both planes. We check this using our
normal vectors:

i 7(1) = (4,-2,—1)-(0,1,—2) = 0.
Ay -7(1) = (2,—2,—1)-(0,1,-2) =0.

3. The contour plot is a set of circles centered at the origin, with the f-level
decreasing as the radius increases. The parabola C5 is tangent to the level
curve f = % at the point (0, %), and to the level curve f = 19—6 at the points
(+1,1).

_ _ 2 _ _ 4
byrz=t y=15-1% z=f(z(t),y(t) = merasme

d) Computing fli—j = % (W) and setting the result equal to zero

gives 4t(t> — 1) = 0. Critical points are thus at ¢ = 0 and ¢ = +1, which
gives the points (0, %, %), which is a local min, and (+1, 3, %), which are
local max’s on the surface S.

e) We're looking for the max/min’s of distance® = 2 + (2 — ¢?)2. Differ-
entiating and setting equal to zero gives the same equation as in part(d):
4t(t* — 1) = 0.

Geometrically, the reason that you get the same results is that the surface
given by z = f(x,y) decreases symmetrically as (x,y) moves away from the
origin. The point (0, %) gives a local min on f, since its distance from O is a
local max; and the points (£1, %) give local max’s on f, since their distance
from O is a local min.

This is confirmed by surface and curve graphs, and also by the level curve
picture.



4. We are considering the sum S, writable as the function
fla,y.2) =2 +y° +2°

on the set of (x,v, 2) satisfying 22 + y? + 2% = 27; x,y, 2 > 0. Geometrically
this is the part of a sphere lying in the first octant. Algebraically, we see
that we only need to work with two variables; the variable z can be solved
for in terms of the other two.

2 =/27— 22— 4>

Here we limit z, y to a quadrant Q of a disc: z,y > 0, 2% +y? < 27. We may
therefore write our function f in terms of just z,y:

fla,y) = 2%+ > + (27 — 22 — y?)*/2.

Partial derivatives are

3
falw,y) = 32" + 5 (=22)V/2T — 2% =y

and

fy(lz,y) = 3y° + §(—23;)\/27 —x2 — 92,

2

Critical points occur when (f,(x,y), f,(z,y)) = (0,0) . Looking at the equa-
tions we see
x =0, or x = /27— x2 — y?

and
y =0, or y = /27 — x2 — 12

We have two independent choices; this gives four possibilities, which work
out to (0,0), (0,/27/2), (1/27/2,0), (3, 3).

2nd

derivative test:

N|=

foo = 62—3(27— 2% — )2 + 32727 — 22 — y%)~
foy = fye=32y(27T —2® —y*)”

fyy = 6y —3(27— % — yQ)% + 3y2(27 — %= yQ)’

N

N

At (0,0);
A= f2(0,0) = —9V3, B = £,,(0,0) =0, C = f,,(0,0) = —9v3.

Therefore, AC' — B? = 243 > 0 and A < 0, which implies the critical point
is a relative maximum. S = 81+v/3.



At (0,3,/3) and (3,/3,0)
We compute A = 184/3/2, B =0, C = —9,/3/2. Therefore, AC — B? < —,
which means we have a saddle points at (34/2,0, 3\/§) and (0,3,/3, 3\/§),

neither max nor min.

At (3,3) we compute A = 18 = C and B = 9 = AC — B? = 243, since
A > 0 this is a minimum = (3,3,3) is a relative minimum. S = 3 - 3% = 81.

Boundary test: 2%+ y? = 27 is the boundary of the region where f is defined.
Parametrize by = = 3v/3cost, y = 3v/3sint, so f(3\/§cost,3\/§sint) =
27(cos® t +sin®t) (since z = 0 = (27 — 22 — y*)/?). max/min by I-variable
calculus: 427(cos®t + sin®t) = 81 cost sint (sint — cost).

Critical points: ¢ = 0,7, 5 ....

Observe that the derivative changes its sign from + — — at ¢t = 0, from
— — +att=7, and from + — — at t = 7.

We get relative maxima at t =0, = 3v/3,y =0, 2 = 0,
andt =35, 2=0,y= 3v3, 2=0. For t = 7 we have a relative minimum

with 2 = 3v/6/2, y = 3v/6/2, z = 0. Note that other critical values of t
give the same or negative values, so these suffice. The value at the relative
maxima on the boundary is S = 81\/5, and for the relative minimum it is

S:&vg

Conclusion: Largest S = 811/3: just one number greater than 0, equal to

3v/3.

Smallest S = 81: three equal numbers, equal to 3.

5.(a) We want the critical points of f(«a, ) = cosa cos 3 cos(a + [3), where
« and 3 are in the range [0, 7]. We take the first partials of f and set them
equal to zero.

fala,B) = —sina cos B cos(a+ ) — cosav cos B sin(a + ) = 0 and
fs(a,B) = —cosa sinf cos(a+ ) — cosa cos § sin(a+ ) = 0.

Using the sine addition formula sin(a + b) = sina cosb + cosasinb we get
fola,B) = —cos B sin(2a+ ) =0 and

fs(a, B) = —cosa sin(a+25) = 0.

One solution is & = § = 7/2, but this gives f = 0, which is not the largest
negative component. a = w/2 and 8 # 7/2 gives a contradiction, as does
a # w/2 and f = 7/2 (show this). Then o # 7/2 and f # 7/2 gives
sinfa +208) = 0 and sin(2a+ ) = 0, which implies that
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Solving, we get o = = T

3
Second-derivative test to show that this is in fact a minimum (i.e., most

negative) — optional.

(b) f(%,%) = —1. Since the length of the wind vector w = (1,0) is 1, this

means that one can capture at most % or 12.5 % of the force of the wind for
the purpose of tacking into the wind.

a+28 =7n and 20+ 5 = 7.

Suggested Experiments. When you move from (0, 0) you will observe

direction | f, Iy

E decreases | stays zero
NE decreases | increases

N stays zero | increases

NW increases | increases

W increases | stays zero
SW increases | decreases
S stays zero | decreases
SE decreases | decreases

Hiking W or E you descend more and more steeply.

Hiking N or S you ascend more and more steeply.



MIT OpenCourseWare
http://ocw.mit.edu

18.02SC Multivariable Calculus
Fall 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.


http://ocw.mit.edu/terms
http://ocw.mit.edu



