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18.02 Problem Set 4, Part II Solutions 

1. (a) The graphs of x → F2(x, t) = cos2(x − 2t) for t = −1, 0, 1 all have

the same sinusoidal shape f(u) = cos2(u) shifted along the x-axis.

(b) This would represent the string displaced into the shape f and then

this wave form traveling down the string over time with the ‘wave speed’

= 2 (linear units/unit time). In physics this is called a traveling wave (not

surprisingly).

The applet shows the same shape f translated along the y (= time) axis –

that is, if you take a trace curve on the surface in any plane y = constant,

you get one of the wave forms f shifted along the x-direction. (Note that

the surface graph in 3D appears static, until one remembers that the y-axis

represents time here; in the language of physics, this would be called a graph

in the space-time domain.)


2. We have two surfaces defined by


z = f(x, y) = x 2 − y 2 

z = g(x, y) = 2 + (x − y)2 . 

a. Let (x, y, z) be in both surfaces. Then z = f(x, y) and z = g(x, y) which 
gives 

x 2 − y 2 = 2 + (x − y)2 

or 
x 2 − y 2 = 2 + x 2 − 2xy + y 2 

which reduces to 
−2y 2 + 2xy = 2 

or 
1 

x = y + 
y 

assuming y = 0. 

When one does an intersection problem, it is possible to get extraneous solu­
tions. Let’s plug back in our formula for x and see if all the points we found 
do give rise to common points between surfaces f and g. 

x 2 − y 2 = (y + y−1)2 − y 2 = 2 + y−2 = 2 + ((y + y−1) − y)2 = 2 + (x − y)2 
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So this checks out. To parameterize our curve, we choose y = t and then get


x = t + t−1 

y = t 

z = 2 + t−2 

(b) First we find a normal to the plane T1 tangent to surface f at (2, 1, 3): 

fx = 2x 

fy = −2y 

fx(2, 1) = 4 

fy(2, 1) = −2. 

We may then use the formula for the normal 

�n1 = �fx(2, 1), fy(2, 1), −1� = �4, −2, −1� . 

We find a normal to the plane T2 tangent to the surface g at (2, 1, 3) by the 
same method: 

gx

gy

gx 

gy 

(2, 1) 

(2, 1) 

= 

= 

= 

= 

2(x − y) 

−2(x − y) 

2 

−2. 

The normal is 

�n2 = �gx(2, 1), gy(2, 1), −1� = �2, −2, −1� . 

Then 
�(T1, T2) = �(�n1, �n2) = θ 

where 
�n1 · �n2 8 + 4 + 1 13 

cos θ = = = . 
|�n1| · |�n2|

√
21
√
9 3

√
21 

So � � 
13 

θ = cos−1 

3
√
21 

≈ .33rad ≈ 19deg. 

(c) �r(t) = �t + t−1, t, 2 + t−2�. So 

�r�(t) = 1 − t−2 , 1, −2t−3 . 
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The point P0 = (2, 1, 3) = �r(t) for t = 1. So the velocity vector of the 
parameterization as it passes through P0 is 

�r�(1) = �0, 1, −2� . 

We think of this vector as being based at point P0, pointing along the curve �r. 
Given this, we know its initial point lies in the planes T1, T2. What remains 
is to prove that the vector is parallel to both planes. We check this using our 
normal vectors: 

�n1 · �r�(1) = �4, −2, −1� · �0, 1, −2� = 0. 

�n2 · �r�(1) = �2, −2, −1� · �0, 1, −2� = 0. 

3. The contour plot is a set of circles centered at the origin, with the f -level 
decreasing as the radius increases.	 The parabola C2 is tangent to the level 

16 3 16 curve f = 
13 at the point (0, 2 ), and to the level curve f = 

9 at the points

(±1, 

2
1 ).


b) x = t, y = 1.5 − t2 , z = f(x(t), y(t)) = 
1+t2+(1

4 
.5−t2)2 .


d) Computing dz = d 4 and setting the result equal to zero 
dt dt 1+t2+(1.5−t2)2 

gives 4t(t2 − 1) = 0. Critical points are thus at t = 0 and t = ±1, which 
gives the points (0, 3 , 16 ), which is a local min, and (±1, 1 , 16 ), which are 

2 13	 2 9 
local max’s on the surface S.


e) We’re looking for the max/min’s of distance2 = t2 + (3 − t2)2 . Differ­

2 

entiating and setting equal to zero gives the same equation as in part(d): 
4t(t2 − 1) = 0. 
Geometrically, the reason that you get the same results is that the surface 
given by z = f(x, y) decreases symmetrically as (x, y) moves away from the 
origin. The point (0, 3

2 ) gives a local min on f , since its distance from O is a 
local max; and the points (±1, 1 ) give local max’s on f , since their distance 

2 
from O is a local min.

This is confirmed by surface and curve graphs, and also by the level curve

picture.
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4. We are considering the sum S, writable as the function 

f(x, y, z) = x 3 + y 3 + z 3 

on the set of (x, y, z) satisfying x2 + y2 + z2 = 27; x, y, z ≥ 0. Geometrically 
this is the part of a sphere lying in the first octant. Algebraically, we see 
that we only need to work with two variables; the variable z can be solved 
for in terms of the other two. 

z = 27 − x2 − y2 . 

Here we limit x, y to a quadrant Q of a disc: x, y ≥ 0, x2 + y2 ≤ 27. We may 
therefore write our function f in terms of just x, y: 

f(x, y) = x 3 + y 3 + (27 − x 2 − y 2)3/2 . 

Partial derivatives are 

3 � 
fx(x, y) = 3x 2 + (−2x) 27 − x2 − y2 

2

and 
3 � 

fy(x, y) = 3y 2 + 
2
(−2y) 27 − x2 − y2 . 

Critical points occur when �fx(x, y), fy(x, y)� = �0, 0� . Looking at the equa­
tions we see � 

x = 0, or x = 27 − x2 − y2 

and � 
y = 0, or y = 27 − x2 − y2 . 

We have two independent choices; this gives four possibilities, which work 
out to (0, 0), (0, 27/2), ( 27/2, 0), (3, 3). 

2nd derivative test: 
1 1 

2fxx = 6x − 3(27 − x 2 2)− y 2(27 − x 2 − y 2)−+ 3x
2

1 
2fxy = fyx = 3xy(27 − x 2 − y 2)−

1 1 
2fyy = 6y − 3(27 − x 2 2)− y 2(27 − x 2 − y 2)−+ 3y
2

At (0,0); 

A = fxx(0, 0) = −9
√
3, B = fxy(0, 0) = 0, C = fyy(0, 0) = −9

√
3. 

Therefore, AC − B2 = 243 > 0 and A < 0, which implies the critical point 
is a relative maximum. S = 81

√
3. 
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At (0, 3 
2
3 ) and (3 

2
3 , 0). 

We compute A = 18 3/2, B = 0, C = −9 3/2. Therefore, AC − B2 < −, 

which means we have a saddle points at (3 3
2 , 0, 3 3

2 ) and (0, 3 3
2 , 3 3

2 ), 
neither max nor min. 

At (3,3) we compute A = 18 = C and B = 9 ⇒ AC − B2 = 243, since 
A > 0 this is a minimum (3,3,3) is a relative minimum. S = 3 33 = 81. ⇒ · 

Boundary test: x2 +y2 = 27 is the boundary of the region where f is defined. 
Parametrize by x = 3

√
3 cos t, y = 3

√
3 sin t, so f(3

√
3 cos t, 3

√
3 sin t) = 

27(cos3 t + sin3 t) (since z = 0 = (27 − x2 − y2)1/2). max/min by 1-variable 
calculus: d 27(cos3 t + sin3 t) = 81 cos t sin t (sin t − cos t).

dt 
Critical points: t = 0, π 

4 , 
π 
2 . . . .


Observe that the derivative changes its sign from + → − at t = 0, from

− → + at t = π , and from + → − at t = π .


4 2 

We get relative maxima at t = 0, x = 3
√
3, y = 0, z = 0, 

π πand t = 
2 , x = 0, y = 3

√
3, z = 0. For t = 

4 we have a relative minimum 
with x = 3

√
6/2, y = 3

√
6/2, z = 0. Note that other critical values of t 

give the same or negative values, so these suffice. The value at the relative 
maxima on the boundary is S = 81

√
3, and for the relative minimum it is 

S = 81 3 .
2 

Conclusion: Largest S = 81
√
3: just one number greater than 0, equal to


3
√
3.


Smallest S = 81: three equal numbers, equal to 3.


5.(a) We want the critical points of f(α, β) = cos α cos β cos(α + β), where 
α and β are in the range [0, π 

2 ]. We take the first partials of f and set them 
equal to zero. 

fα(α, β) = − sin α cos β cos(α + β) − cos α cos β sin(α + β) = 0 and 

fβ (α, β) = − cos α sin β cos(α + β) − cos α cos β sin(α + β) = 0. 

Using the sine addition formula sin(a + b) = sin a cos b + cos a sin b we get 

fα(α, β) = − cos β sin(2α + β) = 0 and 

fβ (α, β) = − cos α sin(α + 2β) = 0. 

One solution is α = β = π/2, but this gives f = 0, which is not the largest 
negative component. α = π/2 and β = π/2 gives a contradiction, as does 
α = π/2 and β = π/2 (show this). Then α = π/2 and β = π/2 gives 
sin(α + 2β) = 0 and sin(2α + β) = 0, which implies that 
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π 
α + 2β = π and 2α + β = π. Solving, we get α = β = . 

3 
Second-derivative test to show that this is in fact a minimum (i.e., most 
negative) � 

– optional.� 
, Since the length of the wind vector w = �1, 0� is 1, this 

means that one can capture at most 1 or 12.5 % of the force of the wind for 
8

3
(b) f
 π π 

3 = −1 
8
.


the purpose of tacking into the wind. 

Suggested Experiments. When you move from (0, 0) you will observe 

direction

E decreases stays zero 
NE decreases increases 
N stays zero increases 
NW increases increases 
W increases stays zero 
SW increases decreases 
S stays zero decreases 
SE decreases decreases 

fx fy 

Hiking W or E you descend more and more steeply. 

Hiking N or S you ascend more and more steeply. 
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