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The Tangent approximation 

4. Critique of the approximation formula. 

First of all, the approximation formula for functions of two or three variables 

∂w ∂w 
(6) Δw ≈ Δx + Δy, if Δx ≈ 0, Δy ≈ 0 . 

∂x 
0 ∂y 

0 

∂w ∂w ∂w 
(7) Δw ≈ Δx + Δy + Δz, if Δx, ΔyΔz ≈ 0 . 

∂x 
0 ∂y 

0 ∂z 
0 

is not a precise mathematical statement, since the symbol ≈ does not specify exactly how 
close the quantitites on either side of the formula are to each other. To fix this up, one 
would have to specify the error in the approximation. (This can be done, but it is not often 
used.) 

A more fundamental objection is that our discussion of approximations was based on the 
assumption that the tangent plane is a good approximation to the surface at (x0, y0, w0). 
Is this really so? 

Look at it this way. The tangent plane was determined as the plane which has the same 
slope as the surface in the i and j directions. This means the approximation (6) will be 
good if you move away from (x0, y0) in the i direction (by taking Δy = 0), or in the j 
direction (putting Δx = 0). But does the tangent plane have the same slope as the surface 
in all the other directions as well? 

Intuitively, we should expect that this will be so if the graph of f(x, y) is a “smooth” 
surface at (x0, y0) — it doesn’t have any sharp points, folds, or look peculiar. Here is the 
mathematical hypothesis which guarantees this. 

Smoothness hypothesis. We say f(x, y) is smooth at (x0, y0) if 

(8) f x and f y are continuous in some rectangle centered at (x0, y0). 

If (8) holds, the approximation formula (6) will be valid. 

Though pathological examples can be constructed, in general the normal way a function 
fails to be smooth (and in turn (6) fails to hold) is that one or both partial derivatives fail 
to exist at (x0, y0). This means of course that you won’t even be able to write the formula 
(6), unless you’re sleepy. Here is a simple example. 

Example 3. Where is w = x2 + y2 smooth? Discuss. 

Solution. Calculating formally, we get 

∂w x ∂w y 

∂x x2 + y2 ∂y x2 + y2 

These are continuous at all points except (0, 0), where they are undefined. So the function 
is smooth except at the origin; the approximation formula (6) should be valid everywhere 
except at the origin. 
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2 THE TANGENT APPROXIMATION 

Indeed, investigating the graph of this function, since w = x2 + y2 says that 

height of graph over (x, y) = distance of (x, y) from w-axis, 

the graph is a right circular cone, with vertex at (0, 0), axis along the w-axis, and vertex 
angle a right angle. Geometrically the graph has a sharp point at the origin, so there should 
be no tangent plane there, and no valid approximation formula (6) — there is no linear 
function which approximates a cone at its vertex. 

A non-geometrical argument for the approximation formula 

We promised earlier a non-geometrical approach to the approximation formula (6) that 
would generalize to higher-dimensions, in particular to the 3-variable formula (7). This 
approach will also show why the hypothesis (8) of smoothness is needed. The argument is 
still imprecise, since it uses the symbol ≈, but it can be refined to a proof (which you will 
find in your book, though it’s not easy reading). 

It uses the one-variable approximation formula for a differentiable function w = f(u) : 

(9) Δw ≈ f ′ (u0)Δu, if Δu ≈ 0 . 

We wish to justify — without using reasoning based on 3-space — the approximation formula 

xΔ 

R∂w ∂w y0
+Δy 

(6) Δw ≈ Δx + Δy, if Δx ≈ 0, Δy ≈ 0 . 
Δ y∂x 

0 ∂y 
0 

y
0 QPWe are trying to calculate the change in w as we go from P to R in the 

picture, where P = (x0, y0), R = (x0 +Δx, y0 +Δy). This change can be 
x x +Δx
0 0thought of as taking place in two steps: 

(10) Δw = Δw1 + Δw2, 

the first being the change in w as you move from P to Q, the second the change as you 
move from Q to R. Using the one-variable approximation formula (9) : 

d � 

(11) Δw1 ≈ f(x, y0) · Δx = f x(x0, y0)Δx;
dx 

x0 

similarly, 

d � 

Δw2 ≈ f(x0 +Δx, y) · Δy = f (x0 +Δx, y0)Δy
dy 

y

y0 

(12) ≈ fy (x0, y0)Δy, 

if we assume that f y is continuous (i.e., f is smooth), since the difference between the two 
terms on the right in the last two lines will then be like ǫΔy, which is negligible compared 
with either term itself. Substituting the two approximate values (11) and (12) into (10) 
gives us the approximation formula (6). � 

To make this a proof, the error terms in the approximations have to be analyzed, or more 
simply, one has to replace the ≈ symbol by equalities based on the Mean-Value Theorem of 
one-variable calculus. 

This argument readily generalizes to the higher-dimensional approximation formulas, such 
as (7); again the essential hypothesis would be smoothness: the three partial derivatives 
w x, wy, wz should be continuous in a neighborhood of the point (x0, y0, z0). 
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