
� 

� 

Least Squares Interpolation 

1. The least-squares line. 

Suppose you have a large number n of experimentally determined points, through which 
you want to pass a curve. There is a formula (the Lagrange interpolation formula) producing 
a polynomial curve of degree n −1 which goes through the points exactly. But normally one 
wants to find a simple curve, like a line, parabola, or exponential, which goes approximately 
through the points, rather than a high-degree polynomial which goes exactly through them. 
The reason is that the location of the points is to some extent determined by experimental 
error, so one wants a smooth-looking curve which averages out these errors, not a wiggly 
polynomial which takes them seriously. 

In this section, we consider the most common case — finding a line which 
goes approximately through a set of data points. 

Suppose the data points are 

(x1, y1), (x2, y2), . . . , (xn, yn) 

and we want to find the line 

(1) y = ax + b 

which “best” passes through them. Assuming our errors in measurement are distributed 
randomly according to the usual bell-shaped curve (the so-called “Gaussian distribution”), 
it can be shown that the right choice of a and b is the one for which the sum D of the 
squares of the deviations 

n 

(2) D = 
� 

� 

yi − (axi + b) 
�2 

i=1 

is a minimum. In the formula (2), the quantities in parentheses (shown by 
dotted lines in the picture) are the deviations between the observed values 

(x , ax +b)
i i 

(x ,y )
i i 

yi and the ones axi + b that would be predicted using the line (1). 

The deviations are squared for theoretical reasons connected with the assumed Gaussian 
error distribution; note however that the effect is to ensure that we sum only positive 
quantities; this is important, since we do not want deviations of opposite sign to cancel each 
other out. It also weights more heavily the larger deviations, keeping experimenters honest, 
since they tend to ignore large deviations (“I had a headache that day”). 

This prescription for finding the line (1) is called the method of least squares, and the 
resulting line (1) is called the least-squares line or the regression line. 

To calculate the values of a and b which make D a minimum, we see where the two partial 
derivatives are zero: 

n
∂D 

= 2(yi − axi − b)(−xi) = 0 
∂a 

i=1 
(3) 

n 
∂D 

= 2(yi − axi − b)(−1) = 0 . 
∂b 

i=1 
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2 LEAST SQUARES INTERPOLATION 

These give us a pair of linear equations for determining a and b, as we see by collecting 
terms and cancelling the 2’s: 

x 2 
i a + xi b = xiyi 

(4)	 � � 

xi a + n b = yi . 

(Notice that it saves a lot of work to differentiate (2) using the chain rule, rather than first 
expanding out the squares.) 

The equations (4) are usually divided by n to make them more expressive: 

1 

(5) 
s̄ a + x̄ b = 

n 
xiyi 

x̄ a + b = ȳ , 
� 

2where x̄ and ȳ are the average of the xi and yi, and s̄ = x
i /n is the average of the squares. 

From this point on use linear algebra to determine a and b. It is a good exercise to see 
that the equations are always solvable unless all the xi are the same (in which case the best 
line is vertical and can’t be written in the form (1)). 

In practice, least-squares lines are found by pressing a calculator button, or giving a 
MatLab command. Examples of calculating a least-squares line are in the exercises accom­
panying the course. Do them from scratch, starting from (2), since the purpose here is to 
get practice with max-min problems in several variables; don’t plug into the equations (5). 
Remember to differentiate (2) using the chain rule; don’t expand out the squares, which 
leads to messy algebra and highly probable error. 

2. Fitting curves by least squares. 

If the experimental points seem to follow a curve rather than a line, it might make more 
sense to try to fit a second-degree polynomial 

(6)	 y = a0 + a1x + a2x 2 

to them. If there are only three points, we can do this exactly (by the Lagrange interpolation 
formula). For more points, however, we once again seek the values of a0, a1, a2 for which 
the sum of the squares of the deviations 

n 
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(7)	 D = yi − (a0 + a1xi + a2x 2 

i ) 
1 

is a minimum. Now there are three unknowns, a0, a1, a2. Calculating (remember to use the 
chain rule!) the three partial derivatives ∂D/∂ai, i = 0, 1, 2, and setting them equal to zero 
leads to a square system of three linear equations; the ai are the three unknowns, and the 
coefficients depend on the data points (xi, yi). They can be solved by finding the inverse 
matrix, elimination, or using a calculator or MatLab. 

If the points seem to lie more and more along a line as x → ∞, but lie on one side of the 
line for low values of x, it might be reasonable to try a function which has similar behavior, 
like 

1 
(8)	 y = a0 + a1x + a2 

x 



3 LEAST SQUARES INTERPOLATION 

and again minimize the sum of the squares of the deviations, as in (7). In general, this 
method of least squares applies to a trial expression of the form 

(9) y = a0f0(x) + a1f1(x) + . . . + arfr(x), 

where the fi(x) are given functions (usually simple ones like 1, x, x2 , 1/x, ekx, etc. Such an 
expression (9) is called a linear combination of the functions fi(x). The method produces 
a square inhomogeneous system of linear equations in the unknowns a0, . . . , ar which can 
be solved by finding the inverse matrix to the system, or by elimination. 

The method also applies to finding a linear function 

(10) z = a1 + a2x + a3y 

to fit a set of data points 

(11) (x1, y1, z1), . . . , (xn, yn, zn) . 

where there are two independent variables x and y and a dependent variable z (this is 
the quantity being experimentally measured, for different values of (x, y)). This time after 
differentiation we get a 3× 3 system of linear equations for determining a1, a2, a3 . 

The essential point in all this is that the unknown coefficients ai should occur linearly 
in the trial function. Try fitting a function like cekx to data points by using least squares, 
and you’ll see the difficulty right away. (Since this is an important problem — fitting an 
exponential to data points — one of the Exercises explains how to adapt the method to this 
type of problem.) 
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