18.02 Problem Set 6, Part II Solutions

Problem 1 (a) $f(x,y) = x^2 - y^2$, $\vec{\nabla} f = 2\langle x, -y \rangle$, $g(x,y) = x^2 + y^2$, $\vec{\nabla} g = 2\langle x, y \rangle$. $\vec{\nabla} f = \lambda \vec{\nabla} g \Rightarrow \langle x, -y \rangle = \lambda \langle x, y \rangle$, or $x = \lambda x$, $y = -\lambda y$. Two possibilities: $x \neq 0 \to \lambda = 1 \to y = 0$; $y \neq 0 \to \lambda = -1 \to x = 0$. So $\vec{\nabla} f = \vec{\nabla} g$ for all non-zero points on the x-axis $(\lambda = 1)$ and $\vec{\nabla} f = -\vec{\nabla} g$ for all non-zero points on the y-axis $(\lambda = -1)$.

- (b) $g(x,y) = x^2 + y^2 = 3$ $y = 0, \ x = \pm \sqrt{3} \approx 1.732, \ (\pm \sqrt{3}, 0) \approx (\pm 1.73, 0) \ \lambda = 1.$ $x = 0, \ y = \pm \sqrt{3}, \ (0, \pm \sqrt{3}) \approx (0, \pm 1.732) \ \lambda = -1.$
- (c) $\lambda = +1$ x-axis contact points $f = x^2 y^2 = 3$ (y = 0) $x = \pm \sqrt{3}$, the two gradients point in the same direction $(\lambda > 0)$.

 $\lambda = -1$ y-axis contact points $f = x^2 - y^2 = -3$ (x = 0) $y = \pm \sqrt{3}$, the two gradients point in the opposite direction $(\lambda < 0)$.

Problem 2

a) We want to minimize

$$I_1^2 R_1 + I_2^2 R_2$$

subject to

$$I_1 + I_2 = I$$

where I is a constant. Using Lagrange multipliers we get the equations:

$$2I_1R_1 = \lambda$$
, $2I_2R_2 = \lambda$, $I_1 + I_2 = I$

which we solve to get that

$$I_1 = \frac{R_2}{R_1 + R_2} I, \qquad I_2 = \frac{R_1}{R_1 + R_2} I$$

(If you are familiar with circuits, note that λ is none other than the voltage!)

b) We want to minimize

$$I_1^2 R_1 + I_2^2 R_2 + I_3^2 R_3$$

subject to

$$I_1 + I_2 + I_3 = I$$

where I is a constant. Using Lagrange multipliers we get the equations:

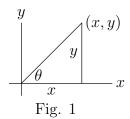
$$2I_1R_1 = \lambda$$
, $2I_2R_2 = \lambda$, $2I_3R_3 = \lambda$, $I_1 + I_2 + I_3 = I$

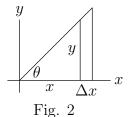
which we solve to get that

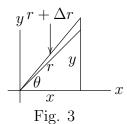
$$I_1 = \frac{R_2 R_3}{D} I$$
, $I_2 = \frac{R_1 R_3}{D} I$, $I_3 = \frac{R_2 R_1}{D} I$,

where $D = R_1 R_3 + R_2 R_3 + R_1 R_2$

Problem 3







a) $y = x \tan \theta$ (see Fig. 1). Area $= w = \frac{1}{2}xy = \frac{1}{2}x^2 \tan \theta$.

$$\Rightarrow \left(\frac{\partial w}{\partial x}\right)_{\theta} = x \tan \theta = y, \text{ and } \left(\frac{\partial w}{\partial \theta}\right)_{x} = \frac{1}{2}x^{2} \sec^{2} \theta.$$

b) As before, $y = x \tan \theta$ and $w_x = \frac{1}{2}y$, $w_y = \frac{1}{2}x$.

$$\left(\frac{\partial w}{\partial x}\right)_{\theta} = w_x \left(\frac{\partial x}{\partial x}\right)_{\theta} + w_y \left(\frac{\partial y}{\partial x}\right)_{\theta} = \frac{1}{2}y + \frac{1}{2}x \tan \theta = \frac{1}{2}y + \frac{1}{2}y = y,$$

$$\left(\frac{\partial w}{\partial \theta}\right)_x = w_x \left(\frac{\partial x}{\partial \theta}\right)_x + w_y \left(\frac{\partial y}{\partial \theta}\right)_x = 0 + \frac{1}{2}x^2 \sec^2 \theta = \frac{1}{2}x^2 \sec^2 \theta.$$

c) $dw = \frac{1}{2}y \, dx + \frac{1}{2}x \, dy$, $dy = \tan \theta \, dx + x \sec^2 \theta \, d\theta$.

Eliminate dy from the equation for dw.

$$\Rightarrow \left(\frac{\partial w}{\partial x}\right)_{\theta} = \frac{1}{2}y + \frac{1}{2}x\tan\theta = y, \text{ and } \left(\frac{\partial w}{\partial \theta}\right)_{x} = \frac{1}{2}x^{2}\sec^{2}\theta.$$

d) If we fix θ and vary x then (see Fig. 2)

 $\Delta w = \text{area of trapezoidal strip at right} = \Delta x \cdot \frac{1}{2} (y + y + \Delta y) = y \Delta x + \frac{1}{2} \Delta x \cdot \Delta y \approx y \Delta x.$

(We ignore second order terms.)
$$\Rightarrow \frac{\Delta w}{\Delta x} \approx y \Rightarrow \left(\frac{\partial w}{\partial x}\right)_{\theta} = y$$
.

If we fix x and vary θ then (see Fig. 3) $\Delta w = \text{area of thin wedge.}$

The angle of the wedge is $\Delta\theta$ and $\Delta w = \frac{1}{2}r(r+\Delta r)\sin(\Delta\theta) \approx \frac{1}{2}r(r+\Delta r)\Delta\theta \approx \frac{1}{2}r^2\Delta\theta$.

(Here, we've used $\sin x \approx x$ and then dropped second order terms.)

$$\Rightarrow \frac{\Delta w}{\Delta \theta} \approx \frac{1}{2}r^2 = \frac{1}{2}x^2 \sec^2 \theta \Rightarrow \left(\frac{\partial w}{\partial \theta}\right) = \frac{1}{2}x^2 \sec^2 \theta.$$

18.02SC Multivariable Calculus Fall 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.