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3. Double Integrals 

3A. Double integrals in rectangular coordinates 

3A-1 
�1 �2 

a) Inner: 6x2y + y2 = 12x2; Outer: 4x3 = 32 . 
y= −1 0 

�π 

b) Inner: −u cos t + 1 t2 cosu = 2u + 1 π2 cosu
2 2 

t=0 
�π/2


Outer: u2 + 
2

1 π2 sinu = (
2

1 π)2 + 
2

1 π2 = 
4

3 π2 .

0


2 
�x �1 

7 1 4 1 1 3c) Inner: x2y2 
√ 

x 
= x6 − x3; Outer: 

7

1 x −
4 x

0 
= 

7 − 4 = −
28 

d) Inner: v
√
u2 + 4 

�u 

= u
√
u2 + 4; Outer: 

3

1 (u2 + 4)3/2 
�1 

= 
3 
1 (5

√
5− 8) 

0 0 

3A-2 
� � � 0 � 2 � � � 2 � 0 

a) (i) dy dx = dy dx (ii) dx dy = dx dy 
R −2 −x R 0 −y 

b) i) The ends of R are at 0 and 2, since 2x − x2 = 0 has 0 and 2 as roots. 
2 

� � � 2 � 2x−x 

dydx = dydx 
R 0 0 

ii) We solve y = 2x − x2 for x in terms of y: write the equation as 
x2 −2x+y = 0 and solve for x by the quadratic formula, getting x = 1±

√
1− y. 

Note also that the maximum point of the graph is (1, 1) (it lies midway between 
the two roots 0 and 2). We get 

� � � 1 � 1+
√

1−y 

dxdy = dxdy, 
R 0 1−

√

1−y 

y=-x 

x 

y 

2 

1 2 

y=2x-x 2 

� � � 

√ 

2 � x � 2 � 
√ 

4−x2 

c) (i) dy dx = dy dx+ dy dx 
2 

y=x 
√

R 0 0 2 0 

� � � 

√ 

2 � 
√

4−y2 

(ii) dx dy = dx dy 2 2 
R 0 y 

d) Hint: First you have to find the points where the two curves intersect, by solving 
simultaneously y2 = x and y = x − 2 (eliminate x). 

The integral dy dx requires two pieces; dx dy only one. 
R R 

� � � 2 � 1−x/2 

3A-3 a) x dA = x dy dx; 
R 0 0 

�2

Inner: x(1− 1

2 x) Outer: 1

2 x
2 − 1

6 x
3

0 
= 4

2 − 8
6 = 2

3
. 

1 
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2 
� � � 1 � 1−y 

b) (2x + y 2) dA = (2x + y 2) dx dy 
R 0 0 

�1−y 2 
�1


Inner: x2 + y2x = 1− y2; Outer: y −
3

1 3 
3

2
y = . 
0 0 

� � � 1 � 1−y 

c) y dA = y dx dy 
R 0 y−1


�1−y �1

Inner: xy 

y−1 
= y[(1− y)− (y − 1)] = 2y − 2y2 Outer: y2 − 2 y3

0 
= 1
.

3 3 

� � � π/2 � cos x 

3A-4 a) sin2 x dA = sin2 x dy dx 
R −π/2 0 

�cos x � 

Inner: y sin2 x = cosx sin2 x Outer: 1 sin3 x −π/2
π/2 

= 1 2(1− (−1)) = .
3 3 3 

0 

� � � 1 � x 

b) xy dA = (xy) dy dx. 
R 0 x2 

�x 
� 

4 6 �1
1 x x 1 1 1 

Inner: 1 xy2 = 1 (x3 x5) Outer: .
2 

x2 2 −
2 4 

− 
6 

=
2 
· 
12 

=
24 

0 

c) The function x2 − y2 is zero on the lines y = x and y = −x, 
and positive on the region R shown, lying between x = 0 and x = 1. 

y=xTherefore 
� � � 1 � x


Volume = (x 2 − y 2) dA = (x 2 − y 2) dy dx.
 1 
2R 0 −x


�x �1
 y=-x y=x
Inner: x2y − 1

3 y
3 

−x 
= 4

3 x
3; Outer: 1

3 x
4

0 
= 1

3 . 2 
5a 

� 2 � 2 � 2 � y � 2 
2 2 2 21 �2 1 

3A-5 a) e−y dy dx = e−y dx dy = e−y y dy = −
2 
e−y 

0 
=

2
(1− e−4) 

0 x 0 0 0 

1 1 1 2 1 
1u uu4 2 e 2 e 2 � 

2 1 1
√
eb) du dt = dt du = u e u du = (u − 1)e u = 1−

√ 30 t u 0 0 u 0 0 2 x=u

3 
� 1 � 1 � 1 � u � 1 3 �1 11 1 u 1 ln 2 

. 5cc) du dx = dx du = du = ln(1 + u 4) = 
0 x1/3 1 + u4 

0 0 1 + u4
0 1 + u4 4 0 4 

3A-6 0; 2 e x dA, S = upper half of R; 4 x 2 dA, Q = first quadrant 
S Q 

0; 4 x 2 dA; 0 
Q 

1 
3A-7 a) x4 + y4 ≥ 0 

x4 + y4 
≤ 1⇒ 

1 +

x dA 1 1 x 1 �1 ln 2 .7 
b) 

R 1 + x2 + y2 
≤ 

0 0 1 + x2 
dx dy =

2
ln(1 + x 2) 

0 
=

2 
< 

2 
. 

1/2 

1/4 

t=u2 

5b 
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3B. Double Integrals in polar coordinates 

3B-1 

a) In polar coordinates, the line x = −1 becomes r cos θ = −1, or 
r = − sec θ. We also need the polar angle of the intersection points; since 
the right triangle is a 30-60-90 triangle (it has one leg 1 and hypotenuse 
2), the limits are (no integrand is given): 

-2 
1 

2 

� � � 4π/3 � 2 

dr dθ = dr dθ. 
R 2π/3 − sec θ 

c) We need the polar angle of the intersection points. To find it, 
we solve the two equations r = 3

2 and r = 1 − cos θ simultanously. 

Eliminating r, we get 3
2 = 1 − cos θ, from which θ = 2π/3 and 4π/3. -2 

Thus the limits are (no integrand is given): 

� � � 4π/3 � 1−cos θ 

dr dθ = dr dθ. 
R 2π/3 3/2 

d) The circle has polar equation r = 2a cos θ. The line y = a has polar 
equation r sin θ = a, or r = a csc θ. Thus the limits are (no integrand): 

� � � π/2 � a csc θ 

dr dθ = dr dθ. 

a 

a 

R 

R π/4 2a cos θ 

r=sin θ 
x=1 

r= sin 2 θ a r=a r=sec θ 

a 1 

1 

2a 2b 2c 2d 

� π/2 � sin 2θ � π/2r dr dθ 1 �π/2 1 
3B-2 a) = sin 2θ dθ = 

r 
−
2
cos 2θ 

0 
= −

2
(−1− 1) = 1. 

0 0 0 

� π/2 a r π 1 �a π 
b) dr dθ = ln(1 + r 2) = ln(1 + a 2). 

0 0 1 + r2 2 
· 
2 0 4 

π/4 sec θ 1 π/4 1 �π/4 1 
c) tan2 θ r dr dθ = tan2 θ sec 2 θ dθ = tan3 θ = .· 

2 6 0 60 0 0


� π/2 � sin θ
 r 
d) dr dθ 

r2 
0 0 

√
1−

Inner: −
√
1− r2 

�sin θ 
= 1− cos θ Outer: θ − sin θ 

�π/2 
= π/2− 1. 

0 0 

3B-3 a) the hemisphere is the graph of z = a2 − x2 − y2 = 
√
a2 − r2, so we get 

3/2 
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� � � 2π � a 
� � 1 �a 1 2 
a2 r2 dA = a2 r2 r dr dθ =− − 2π · − 

3
(a 2 − r 2)3/2

0 
= 2π · 

3 
3 

3 
πa3 .a = 

R 0 0


� π/2 � a � a � π/2 4 4
a 1 a
b) (r cos θ)(r sin θ)r dr dθ = r 3 dr sin θ cos θ dθ = = . 

4 
· 
2 80 0 0 0 

c) In order to be able to use the integral formulas at the beginning of 3B, we use symmetry 
about the y-axis to compute the volume of just the right side, and double the answer. 

� �

� 

� π/2 � 2 sin θ � π/2 1

x2 + y2 dA = 2 r r dr dθ = 2
 (2 sin θ)3 dθ 

3R 0 0 0 

8 2 32 
= 2 = , by the integral formula at the beginning of 3B.· 

3 
· 
3 9 

√ 
� π/2 � cos θ � π/2 1 1 π π r2=cosθ 

d) 2 r 2 r dr dθ = 2 cos 2 θ dθ = 2 = . 
4 

· 
4 
· 
4 80 0 0 

3C. Applications of Double Integration 

3C-1 Placing the figure so its legs are on the positive x- and y-axes, 

2a) M.I. = 
a a−x 

x 2 dy dx Inner: x y 
�a−x 

= x2(a − x); Outer: 
1 3 1 4 

�a 1 4 x = a . 
0 3 

x a−
4 0 12 0 0 

1 

r=2sinθ 

x 

y 

top view 

1 1 1 
y=a-xb) (x 2 + y 2) dA = x 2 dA+ y 2 dA = 4 4 4 a a + a = a . 

12 12 6R R R 

a 
ac) Divide the triangle symmetrically into two smaller triangles, their legs are √

2
; 

a1 � a �4 a4 

Using the result of part (a), M.I. of R about hypotenuse = 2 · 
12 

√
2 

=
24 

a 
2 

3C-2 In both cases, x̄ is clear by symmetry; we only need ȳ. 
� � � π 

a) Mass is dA = sinx dx = 2 
R 0 
� � � π � sin x � π1 π π 

y-moment is y dA = y dy dx = sin2 x dx = ; therefore ȳ = . 
2 4 8R 0 0 0 

π 
b) Mass is y dA = , by part (a). Using the formulas at the beginning of 3B,

4R 
� � � π � sin x � π/2 sin3 x 1 2 4


y-moment is y 2 dA = y 2 dy dx = 2 dx = 2
 = 
3 

· 
3 
· 
3 9

, 
R 0 0 0 
4 4 16 

Therefore ȳ = = . 
9 
· 
π 9π 
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3C-3 Place the segment either horizontally or vertically, so the diameter is respectively on 
the x or y axis. Find the moment of half the segment and double the answer. 

(a) (Horizontally, using rectangular coordinates) Note that a2 c2 = b2 .−
� b � 

√ 

a2 
−x2 � b 1 2 2 1� 

b2 x3 �b 1 2 
y dy dx = 

2
(a − x − c 2) dx =

2 
x − 

3 0 
=

3 
b3; ans: 

3 
b3 .


0 c 0


(b) (Vertically, using polar coordinates). Note that x = c becomes r = c sec θ. 

� α � a �a 

Moment = (r cos θ) r dr dθ Inner: 1 r3 cos θ = 1 (a3 cos θ − c3 sec2 θ)
3 3 

0 c sec θ c sec θ 
� �α 2 

Outer: 1 a3 sin θ − c3 tan θ = 1 (a2b− c2b) = 1 b3; ans: b3 .
3 3 3 

0 3 

3C-4 Place the sector so its vertex is at the origin and its axis of symmetry lies along the 
positive x-axis. By symmetry, the center of mass lies on the x-axis, so we only need find x̄. 

2α 
Since δ = 1, the area and mass of the disc are the same: πa2 = a 2α. · 

2π 
� α a �a 

x-moment: 2 r cos θ r dr dθ Inner: 2 r3 cos θ ;· 
3

00 0 

�α 2 a3 sinα 2 sinα 
Outer: 2 a3 sin θ = 2 3a3 sinα x̄ = = a .

3 
0

3 a2α 3 
· · 

α 

α 
a 

3C-5 By symmetry, we use just the upper half of the loop and double the answer. The 
upper half lies between θ = 0 and θ = π/4. 

√ 
� π/4 � a cos 2θ � π/4 1 

2 r 2 r dr dθ = 2 a 4 cos 2 2θ dθ 
40 0 0 

a4 π/2 a4 1 π πa4 
r2=cos 2θPutting u = 2θ, the above = cos 2 u du = = . 

2 2 4 
· 
2 
· 
2 16 · 0 

b 

b 

c a 

a 

a 
α 
a 

c 

x +y =a 

r=a 

2 2 2 

3D. Changing Variables 

3D-1 Let u = x − 3y, v = 2x + y; 
∂(u, v)

= 
�

�

� 

2
1 −

1
3 
�

�

� = 7; 
∂(x, y) 

=
1 
. 

∂(x, y) ∂(u, v) 7 

� � � 7 � 4 x − 3y
dx dy =

1 u 
dv du 

R 2x + y 7 0 1 v


�4 �7

49 ln 4 1 49 ln 4 

Inner: u ln v = u ln 4; Outer: 1

2 u
2 ln 4 = ; Ans: = 7 ln 2 

2 7 2
1 0 

u = 0 

u = 7 

v = 1 v = 4 

R 
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∂(u, v) ∂(x, y) 1 
3D-2 Let u = x + y, v = x − y. Then = 2; = . 

∂(x, y) ∂(u, v) 2 

To get the uv-equation of the bottom of the triangular region:

y = 0 u = x, v = x u = v.
⇒ ⇒ 

� �
� � 

� 2 � u 

R

v=0 u = 2 
cos 

x − y 
dx dy =

1 v 
cos dv du 

R x + y 2 0 0 u 

u = v 
�u �2 

v uInner: u sin = u sin 1 Outer: 1 u2 sin 1 = 2 sin 1 Ans: sin 1 =0 
2u 

0 0 

∂(x, y) � 1 0 � 1 
3D-3 Let u = x, v = 2y; = 

� 

1 
� 

= 
∂(u, v) 0 

2 2 

Letting R be the elliptical region whose boundary is x2 + 4y2 

and u2 + v2 = 16 in uv-coordinates (a circular disc), we have 

1 
(16− x 2 − 4y 2) dy dx = 

2 
(16− u 2 − v 2) dv du 

R R 

= 16 in xy-coordinates, 

1 
� 2π � 4 � 

r2 r4 �4 

= 
2 

(16− r 2) r dr dθ = π 16 
2 

− 
4

= 
0 

∂(x, y) 
= 

∂(u, v) 

It is best to integrate first over the lines shown, v = c; this means v is 
held constant, i.e., we are integrating first with respect to u. This gives v=-

� � � 4 � v/2 du dv 
(2x − 3y)2(x + y)2dx dy = v 2 u 2 . 

5R 0 −v/3 

v2 3 

�v/2 
v2 3 

� 

1 
� 

v6 � 

1 1 
�4 

46 � 

1 
Inner: u = v 

8 
−

−1 
Outer: + = 

15 15 27 6 15 8 27 6 15 8 
−v/3 0

· · 

3D-5 Let u = xy, v = y/x; in the other direction this gives y2 = uv, x2 = u/v. 

∂(u, v) � y x � 2y ∂(x, y) 1 
We have = = 

∂(x, y) −y/x2 1/x x 
= 2v; 

∂(u, v) 
=

2v 
; this gives 

� � � 3 � 2 u 1 
(x 2 + y 2) dx dy = + uv dv du. 

v 2vR 0 1 

�2 � � �3 
u 1 1 1 3u 3 2 27 

Inner: 
−
2v

u 
+

2 
v = u −

4
+ 1 + 

2 
−

2 
= 

4
; Outer: 

8 
u =

8 
. 

1 0 

0 0 

∂(u, v) � 1 1 � 
3D-4 Let u = x + y, v = 2x − 3y; then 

∂(x, y)
=

2 
= −5; −3 

We next express the boundary of the region R in uv-coordinates. 
For the x-axis, we have y = 0, so u = x, v = 2x, giving v = 2u. 
For the y-axis, we have x = 0, so u = y, v = −3y, giving v = −3u. 

64π. 

1 
. 

5 
v=0


v=2 u


v=4 

3u 

1 
+ . 

27 

(v=2) 
y=2x 

(v=1) 
y=x 

xy=3 
(u=3) 

u =0 

R 

3D-8 a) y = x2; therefore u = x3, v = x, which gives u = v3 . 



7 

u v 
b) We get 

v 
+ uv = 1, or u = 

v2 + 1
; (cf. 3D-5) 
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