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4. Line Integrals in the Plane 

4A. Plane Vector Fields 

4A-1 

a) All vectors in the field are identical; continuously differentiable everywhere. 
b) The vector at P has its tail at P and head at the origin; field is cont. diff. everywhere. 
c) All vectors have unit length and point radially outwards; cont. diff. except at (0, 0). 
d) Vector at P has unit length, and the clockwise direction perpendicular to OP . 

x i + y j x i + y j
4A-2 a) a i + b j b) c) f ′(r) 

r2 r 

4A-3 a) i + 2 j b) −r(x i + y j ) c) 
y i 

r

−
3 

x j 
d) f(x, y)( i + j ) 

−y i + x j
4A-4 k · 

r2 

4B. Line Integrals in the Plane 

4B-1 
� � 1 3 �1 

a) On C1: y = 0, dy = 0; therefore 
C1 

(x 2 − y) dx+ 2x dy = 
−1 

x 2 dx = 
x

3 −1 3

2 
= . 

� � 1 

On C2: y = 1− x2, dy = −2x dx; (x 2 − y) dx+2x dy = (2x 2 − 1) dx− 4x 2 dx 
C2 −1 

� 1 � �1
2 3 4 10 

= (−2x 2 − 1) dx = − 
3 
x + x = −

3 
− 2 −

3 
= . 

−1 −1 

b) C: use the parametrization x = cos t, y = sin t; then dx = − sin t dt, dy = cos t dt 
� � 0 � 0 �0 

C 

xy dx− x 2 dy = 
π/2 

− sin2 t cos t dt− cos 2 t cos t dt = − 
π/2 

cos t dt = − sin t 
π/2 

= 1. 

c) C = C1 + C2 + C3; C1 : x = dx = 0; C2 : y = 1− x; C3 : y = dy = 0 
� � � 1 � � 1 

y dx− x dy = 0 + (1− x)dx− x(−dx) + 0 = dx = 1. 
C C1 0 C3 0


� � 2π


d) C : x = 2 cos t, y = sin t; dx = −2 sin t dt y dx = −2 sin2 t dt = −2π. 
C 0 

e) C : x = t2, y = t3; dx = 2t dt, dy = 3t2 dt 
� � 2 � 2 �2 

6y dx+ x dy = 6t3(2t dt) + t2(3t2 dt) = (15t4) dt = 3t5 = 3 31. 
C 1 1 1 

· 

� � � 1 �1 
x2 5 

f) (x + y)dx+ xy dy = 0 + (x + 2)dx = + 2x = . 
2 2C C1 0 0 

4B-2 a) The field F points radially outward, the unit tangent t to the circle is always 
perpendicular to the radius; therefore F t = 0 and 

C 
F dr = 

C 
F t ds = 0· · · 

b) The field F is always tangent to the circle of radius a, in the clockwise direction, and 
of magnitude a. Therefore F = −at, so that 

C 
F · dr = 

C 
F · t ds = − 

C 
a ds = −2πa2 . 

1 
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2 E. 18.02 EXERCISES 

i + j
4B-3 a) maximum if C is in the direction of the field: C = √

2 
i + j

b) minimum if C is in the opposite direction to the field: C = − √
2 

c) zero if C is perpendicular to the field: C = ± i √−
2 

j 

d) max = 
√
2, min = −

√
2: by (a) and (b), for the max or min F and C have 

respectively the same or opposite constant direction, so F · dr = ±|F| · |C| = ±
√
2. 

C 

4C. Gradient Fields and Exact Differentials 

4C-1 a) F = ∇f = 3x2y i + (x3 + 3y2) j 

b) (i) Using y as parameter, C1 is: x = y2, y = y; thus dx = 2y dy, and 
� � 1 � 1 

F dr = 3(y 2)2 y 2y dy+[(y 2)3 +3y 2] dy = (7y 6 +3y 2) dy = (y 7 + y 3) 
�1 

= 4. 
C1 −1 −1 

· · 
−1 

b) (ii) Using y as parameter, C2 is: x = 1, y = y; thus dx = 0, and

� � 1


F dr = (1 + 3y 2) dy = (y + y 3) 
�1 

= 4.

C2 −1


· 
−1 

b) (iii) By the Fundamental Theorem of Calculus for line integrals, 

∇f dr = f(B)− f(A). 
C 

· 
� 

Here A = (1,−1) and B = (1, 1), so that ∇f dr = (1 + 1)− (−1− 1) = 4.· 
C 

4C-2 a) F = ∇f = (xyexy + exy) i + (x2exy) j . 

b) (i) Using x as parameter, C is: x = x, y = 1/x, so dy = −dx/x2 , and so 
� � 0 

F dr = (e + e) dx+ (x 2 e)(−dx/x2) = (2ex − ex) 
�0 

= −e. 
C 1 

· 
1 

b) (ii) Using the F.T.C. for line integrals, F dr = f(1, 1)−f(0,∞) = 0−e = −e. · 
C 

4C-3 a) F = ∇f = (cosx cos y) i − (sinx sin y) j . 

b) Since F dr is path-independent, for any C connecting A : (x0, y0) to B : (x1, y1), · 
C 

we have by the F.T.C. for line integrals, 

F dr = sinx1 cos y1 − sinx0 cos y0· 
C 

This difference on the right-hand side is maximized if sinx1 cos y1 is maximized, and 
sinx0 cos y0 is minimized. Since | sinx cos y| = | sinx|| cos y| ≤ 1, the difference on the right 
hand side has a maximum of 2, attained when sinx1 cos y1 = 1 and sinx0 cos y0 = −1. 

(For example, a C running from (−π/2, 0) to (π/2, 0) gives this maximum value.) 
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4. LINE INTEGRALS IN THE PLANE 3 

4C-5 a) F is a gradient field only if My = Nx, that is, if 2y = ay, so a = 2. 

By inspection, the potential function is f(x, y) = xy2 +x2 +c; you can check that F = ∇f . 

b) The equationMy = Nx becomes ex+y(x+a) = xex+y+ex+y, which = ex+y(x+1). 
Therefore a = 1. 

To find the potential function f(x, y), using Method 2 we have 

fx = eyex(x + 1) f(x, y) = eyxex + g(y).⇒ 
Differentiating, and comparing the result with N , we find 

fy = eyxex + g′(y) = xex+y; therefore g′(y) = 0, so g(y) = c and f(x, y) = x ex+y + c. 

C

C1 

(x ,y )1 14C-6 a) ydx− xdy is not exact, since My = 1 but Nx = −1. 

b) y(2x + y) dx+ x(2y + x) dy is exact, since My = 2x + 2y = Nx. 2 

Using Method 1 to find the potential function f(x, y), we calculate the 
x11line integral over the standard broken line path shown, C = C1 + C2. 

� � (x1,y1) 

f(x1, y1) = F dr = y(2x + y) dx+ x(2y + x) dy. 
C 

· 
(0,0) 

On C1 we have y = 0 and dy = 0, so F dr = 0.· 
C1 

y1 

On C2, we have x = x1 and dx = 0, so F dr = x1(2y + x1) dx = x1y1
2 + x 21y1.


C2 

· 
0


Therefore, f(x, y) = x2y + xy2; to get all possible functions, add +c . 

4D. Green’s Theorem 

4D-1 a) Evaluating the line integral first, we have C : x = cos t, y = sin t, so 
� � 2π � 2π � ��2π 

2y dx+ x dy = (−2 sin2 t + cos 2 t) dt = (1− 3 sin2 t) dt = 
t sin 2t 

=t − 3
2 
− 

4 
−π. 

C 0 0 0 

For the double integral over the circular region R inside the C, we have 

R 

(Nx −My) dA = 
R 

(1− 2) dA = − area of R = −π. 

b) Evaluating the line integral, over the indicated path C = C1 + C2 + C3 + C4, 
� � 2 � 1 � 0 � 0 

x 2dx+ x 2dy = x 2dx+ 4 dy + x 2dx+ 0 dy = 4, 
C 0 0 2 1 

since the first and third integrals cancel, and the fourth is 0. 

For the double integral over the rectangle R, 
� � � 2 � 1 �2 

2x dA = 2x dydx = x 2 = 4. 
R 0 0 0 

1 

C4 C2R 

1C 

C3 

2 
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4 E. 18.02 EXERCISES 

c) Evaluating the line integral over C = C1 + C2, we have

� � 1 �1


x4 x6 7 
C1 : x = x, y = x2; xy dx + y 2dy = x x 2dx+ x 4 2x dx = + = · · 

4 3 12 C1 0 0 

C2 : x = x, y = x; 

� 

xy dx + y 2dy = 

� 0 

(x 2dx+ x 2dx) =
3

2 
x 3 

�0 

= −
3

2 
. 

C2 1 1 

7 2 1 
Therefore, xy dx + y 2dy =

12 
−

3
= −

12 
. 

C 

Evaluating the double integral over the interior R of C, we have 
� � � 1 � x 

−x dA = −x dydx; 
R 0 x2 

�y=x 
x3 x4 �1 

1 1 1 
evaluating: Inner: −xy = −x2 + x3; Outer: −

3
+

4 
= −

3
+

4 
= −

12 
. 

y=x2 0 

4D-2 By Green’s theorem, 4x 3y dx+ x 4 dy = (4x 3 − 4x 3) dA = 0. 
C 

This is true for every closed curve C in the plane, since M and N have continuous 
derivatives for all x, y. 

4D-3 We use the symmetric form for the integrand since the parametrization of the curve 
does not favor x or y; this leads to the easiest calculation. 

1 
� 

1 
� 2π 3 

� 2π 

Area = 
2 C 

−y dx+x dy =
2 0 2 0 

3 sin4 t cos 2 t dt+3 sin2 t cos 4 t dt = sin2 t cos 2 t dt 

� �2π
3 t sin 4t 3π 

Using sin2 t cos2 t = 4
1 (sin 2t)2 = 4

1 · 21 (1− cos 4t), the above =
8 2 

− 
8 

=
8 
. 

0 

4D-4 By Green’s theorem, −y 3dx+x 3dy = (3x 2 +3y 2) dA > 0, since the integrand 
C R 

is always positive outside the origin. 

4D-5 Let C be a square, and R its interior. Using Green’s theorem, 

� � � � � 

xy 2dx+ (x 2 y + 2x) dy = (2xy + 2 − 2xy) dA = 2 dA = 2(area of R). 
C R R 

4E. Two-dimensional Flux 

4E-1 The vector F is the velocity vector for a rotating disc; it is at each point tangent to 
the circle centered at the origin and passing through that point. 

a) Since F is tangent to the circle, F n = 0 at every point on the circle, so the flux is 0. · 
b) F = x j at the point (x, 0) on the line. So if x0 > 0, the flux at x0 has the same 

magnitude as the flux at −x0 but the opposite sign, so the net flux over the line is 0. 
� � 1 1 

c) n = − j , so F · n = x j · − j = −x. Thus F · n ds = 
0 

−x dx = −
2 
. 
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4E-2 All the vectors of F have length 
√
2 and point northeast. So the flux across a line 

segment C of length 1 will be 

a) maximal, if C points northwest; 
b) minimal, if C point southeast; 
c) zero, if C points northeast or southwest; 
d) −1, if C has the direction and magnitude of i or − j ; the corresponding normal vectors 

are then respectively − j and − i , by convention, so that F · n = ( i + j ) · − j = −1. or 
( i + j ) · − i = −1. 

e) respectively 
√
2 and −

√
2, since the angle θ between F and n is respectively 0 and π, 

so that respectively F · n = |F| cos θ = ±
√
2. 

4E-3 

� 

C 

M dy −N dx = 

� 

C 

x 2dy − xy dx = 

� 1 

0 
(t + 1)22t dt − (t + 1)t2 dt 

= 

� 1 

0 
(t3 + 3t2 + 2t) dt = 

t4 

4 
+ t3 + t2 

�1 

0 

= 
9 

4 
. 

4E-4 Taking the curve C = C1 + C2 + C3 + C4 as shown, 
� � � 1 � 0 � 

(1,1) 

1 

1 

C 

C 

C 

C 

1 

2 

3 

4 

· n = |F| = am, at every point of the 

x dy − y dx = 0 + −dx+ 
C C1 0 

4E-5 Since F and n both point radially outwards, F
circle C of radius a centered at the origin. 

a) The flux across C is am 2πa = 2πam+1 .· 
b) The flux will be independent of a if m = −1. 

dy + 0 = −2. 
1 C4 

4F. Green’s Theorem in Normal Form 

4F-1 a) both are 0 b) div F = 2x + 2y; curl F = 0 c) div F = x + y; curl F = y − x 

4F-2 a) div F = (−ωy)x + (ωx)y = 0; curl F = (ωx)x − (−ωy)y = 2ω. 

b) Since F is the velocity field of a fluid rotating with constant angular velocity (like 
a rigid disc), there are no sources or sinks: fluid is not being added to or subtracted from 
the flow at any point. 

c) A paddlewheel placed at the origin will clearly spin with the same angular velocity 
ω as the rotating fluid, so by Notes V4,(11), the curl should be 2ω at the origin. (It is much 
less clear that the curl is 2ω at all other points as well.) 

4F-3 The line integral for flux is x dy − y dx; its value is 0 on any segment 
C 

of the x-axis since y = dy = 0; on the upper half of the unit semicircle (oriented 
-= 1counterclockwise), F · n 1, so the flux is the length of the semicircle: π. 

Letting R be the region inside C, 

� � 

R 

div F dA = 

� � 

R 

2 dA = 2(π/2) = π. 

4F-4 For the flux integral 

� 

C 

x 2dy − xy dx over C = C1 + C2 + C3 + C4, 

we get for the four sides respectively 

� 

C1 

0+ 

� 1 

0 
dy+ 

� 0 

1 
−x dx + 

� 

C4 

0 = 
3 

2 
. 

(1,1) 

1 

1 

R 

C 

C 

C 

C 

1 

2 

3 

4 

1 
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� � � � � 1 � 1 �1
3 2 3 

For the double integral, div F dA = 3x dA = 3x dydx = x = . 
2 2R R 0 0 0 

4F-5 r = (x2 + y2)1/2 ⇒ rx = 12 (x
2 + y2)−1/2 · 2x = 

x

r 
; by symmetry, ry = 

y

r 
. 

To calculate div F, we have M = rnx and N = rny; therefore by the chain rule, and the 
above values for rx and ry, we have 

nMx = r + nr n−1 x
x 
= r n + n r n−2 x 2; similarly (or by symmetry), · 

r

Ny = r n + nr n−1 y

y 
= r n + n r n−2 y 2 , so that
· 

r


div F = Mx + Ny = 2rn + nrn−2(x2 + y2) = rn(2 + n), which = 0 if n = −2.


To calculate curl F, we have by the chain rule 

Nx = nr n−1 · x
r 
· y; My = nr n−1 · y

r 
· x, so that curl F = Nx −My = 0, for all n. 

4G. Simply-connected Regions 

4G-1 Hypotheses: the region R is simply connected, F = M i + N j has continuous 
derivatives in R, and curl F = 0 in R. 

Conclusion: F is a gradient field in R (or, M dx+ N dy is an exact differential). 

a) curl F = 2y − 2y = 0, and R is the whole xy-plane. Therefore F = ∇f in the plane. 

b) curl F = −y sinx − x sin y =6 0, so the differential is not exact. 

c) curl F = 0, but R is the exterior of the unit circle, which is not simply-connected; 
criterion fails. 

d) curl F = 0, and R is the interior of the unit circle, which is simply-connected, so the 
differential is exact. 

e) curl F = 0 and R is the first quadrant, which is simply-connected, so F is a gradient 
field. 

4G-2 a) f(x, y) = xy2 + 2x b) f(x, y) = 23 
3/2 2

3 y
3/2x + 

c) Using Method 1, we take the origin as the starting point and use the straight line 
to (x1, y1) as the path C. In polar coordinates, x1 = r1 cos θ1, y1 = r1 sin θ1; we use r as 
the parameter, so the path is C : x = r cos θ1, y = r sin θ1, 0 ≤ r ≤ r1. Then 

r1x dx + y dy r cos2 θ1 + r sin2 θ1
f(x1, y1) = = dr 

r2 r2C 

√
1− 0 

√
1−

�
�r1r1 r � � 

= dr = r2 = r12 + 1. 
0 

√
1− r2 

− 1−
0 

− 1−

x dx + y dy 
Therefore, √

1−
= d(− 1− r2). 

r2 

2 r2 2
√
1− r2 

= d(− 1− r2). Another approach: x dx+y dy = 1 d(r2); therefore 
x dx + y dy 

=
1 d(r2) � 

√
1−

(Think of r2 as a new variable u, and integrate.) 
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4G-3 By Example 3 in Notes V5, we know that F = 
x i + y j 

r3 
= ∇ 

� 

− 1 
r 

� 

. 

Therefore, 

� (3,4) 

(1,1) 
= − 1 

r 

�5 

√
2 

= 
1 √
2 
− 1 

5 
. 

4G-4 By Green’s theorem xy dx + x 2 dy = x dA. 
C R 

For any plane region of density 1, we have 
R 
x dA = x̄ (area of R), where x̄ is the ·

x-component of its center of mass. Since our region is symmetric with respect to the y-axis, 
its center of mass is on the y-axis, hence x̄ = 0 and so 

R 
x dA = 0. 

4G-5 

a) yes 
b) no (a circle surrounding the line segment lies in R, but its interior does not) 
c) yes (no finite curve could surround the entire positive x-axis) 
d) no (the region does not consist of one connected piece) 
e) yes if θ0 < 2π; no if θ0 ≥ 2π, since then R is the plane with (0, 0) removed 
f) no (a circle between the two boundary circles lies in R, but its interior does not) 
g) yes 

4G-6 

a) continuously differentiable for x, y > 0; thus R is the first quadrant without the two 
axes, which is simply-connected. 

b) continuous differentiable if r < 1; thus R is the interior of the unit circle, and is 
simply-connected. 

c) continuously differentiable if r > 1; thus R is the exterior of the unit circle, and is not 
simply-connected. 

d) continuously differentiable if r = 0; thus R is the plane with the origin removed, and 
is not simply-connected. 

e) continuously differentiable if r = 0; same as (d). 

4H. Multiply-connected Regions 

4H-1 a) 0; 0 b) 2; 4π c) −1; −2π d) −2; −4π 

4H-2 In each case, the winding number about each of the points is given, then the value 
of the line integral of F around the curve. 

a) (1,−1, 1); 2−
√
2 +

√
3 

b) (−1, 0, 1); −2 +
√
3 

c) (−1, 0, 0); −2 

d) (−1,−2, 1); −2− 2
√
2 +

√
3 
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