Problems: Work and Line Integrals

1. Evaluate $I = \int_C y \, dx + (x+2y) \, dy$ where C is the curve shown.

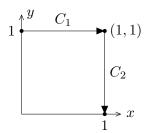


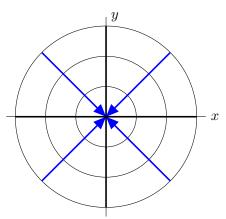
Figure 1: Curve C is C_1 followed by C_2 .

Answer: The curve C is made up of two pieces, so

$$I = \int_{C_1} y \, dx + (x + 2y) \, dy + \int_{C_2} y \, dx + (x + 2y) \, dy.$$

Note that we don't always need to introduce the variable t.

 $C_1: y=1$, use x as parameter. $0 \le x \le 1 \implies dx = dx, dy = 0$.


$$\Rightarrow \int_{C_1} y \, dx + (2 + 2y) \, dy = \int_0^1 dx = 1.$$

 C_2 : x = 1, use y as parameter. y goes from 1 to 0.

$$\Rightarrow \int_{C_2} y \, dx + (2 + 2y) \, dy = \int_1^0 (1 + 2y) \, dy = -\int_0^1 1 + 2y \, dy = -2.$$

So $I = 1 - 2 = -1$.

2. Let $\mathbf{F} = -x\mathbf{i} - y\mathbf{j}$. Sketch this vector field and describe it in words.

Answer:

Each arrow starts at (x, y) and ends at the origin. The further a vector in this field is from (0,0), the longer it is.

MIT OpenCourseWare http://ocw.mit.edu

18.02SC Multivariable Calculus Fall 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.