
Fundamental Theorem for Line Integrals 

Gradient fields and potential functions 

Earlier we learned about the gradient of a scalar valued function 

vf(x, y) = Ufx, fy). 
3 4 2 4 3For example, vx y = U3x y , 4x y3).
 

Now that we know about vector fields, we recognize this as a special case. We will call it a
 
gradient field. The function f will be called a potential function for the field.
 

For gradient fields we get the following theorem, which you should recognize as being similar
 
to the fundamental theorem of calculus. y
 

Theorem (Fundamental Theorem for line integrals) 
P1 = (x1, y1)If F = vf is a gradient field and C is any curve with endpoints 

P0 = (x0, y0) and P1 = (x1, y1) then 
F · dr = f(x, y)|P1 = f(x1, y1) − f(x0, y0).P0 

C 
x

That is, for gradient fields the line integral is independent of the 
path taken, i.e., it depends only on the endpoints of C. 

3 2Example 1: Let f(x, y) = xy + x ⇒ F = vf = Uy3 + 2x, 3xy2) 
Let C be the curve shown and compute I = F · dr. 

C y 

C 

P0 = (x0, y0) 

Do this both directly (as in the previous topic) and using the above formula. 
Method 1: parametrize C: x = x, y = 2x, 0 ≤ x ≤ 1.  	  1 

⇒	 I = (y 3 + 2x) dx + 3xy 2 dy = (8x 3 + 2x) dx + 12x 32 dx 
C 0 1 

= 32x 3 + 2x dx = 9.
 
0
  

Method 2: vf · dr = f(1, 2) − f(0, 0) = 9. 
C 

Proof of the fundamental theorem    	  t1 dx	 dyvf · dr = fx dx + fy dy = fx(x(t), y(t)) + fy(x(t), y(t)) dt 
dt	 dtC C	 t0 t1 d 

= f(x(t), y(t)) dt = f(x(t), y(t))|t1 = f(P1) − f(P0)t0dtt0 

The third equality above follows from the chain rule. 

Significance of the fundamental theorem  
For gradient fields F the work integral F · dr depends only on the endpoints of the path. 

C 
We call such a line integral path independent. 

The special case of this for closed curves C gives:  
F = vf ⇒ F · dr = 0 (proof below). 
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Following physics, where a conservative force does no work around a closed loop, we say 
F = vf is a conservative field. 

Example 1: If F is the electric field of an electric charge it is conservative. 

Example 2: The gravitational field of a mass is conservative. 

Differentials: Here we can use differentials to rephrase what we’ve done before. First 
recall: 

a) vf = fx i + fy j ⇒ vf · dr = fx dx + fy dy. 

b) vf · dr = f(P1) − f(p0). 
C 

Using differentials we have df = fx dx + fy dy. (This is the same as vf · dr.) We say 
M dx + N dy is an exact differential if M dx + N dy = df for some function f . 

As in (b) above we have M dx + N dy = df = f(P1) − f(P0). 
C C 

Proof that path independence is equivalent to conservative 

We show that 

F · dr is path independent for any curve C 
C 

is equivalent to 

F · dr = 0 for any closed path. 
C 

This is not hard, it is really an exercise to demonstrate the logical structure of a proof
 
showing equivalence. We have to show:
 

i) Path independence ⇒ the line integral around any closed path is 0.
 

ii) The line integral around all closed paths is 0 ⇒ path independence.
 

i) Assume path independence and consider the closed path C shown in figure (i) below. Since
 

the starting point P0 is the same as the endpoint P1 we get F · dr = f(P1) − f(P0) = 0
 
C 

(this proves (i)). 

ii) Assume F · dr = 0 for any closed curve. If C1 and C2 are both paths between P0 
C 

and P1 (see fig. 2) then C1 − C2 is a closed path. So by hypothesis 

F · dr = F · dr − F · dr = 0 ⇒ F · dr = F · dr. 
C1−C2 C1 C2 C1 C2 

That is the line integral is path independent, which proves (ii). 
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