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6. Vector Integral Calculus in Space 

6A. Vector Fields in Space 

6A-1 a) the vectors are all unit vectors, pointing radially outward. 
b) the vector at P has its head on the y-axis, and is perpendicular to it 

6A-2 2
1 (−x i − y j − z k ) 

6A-3 ω(−z j + y k ) 

6A-4 A vector field F = M i + N j + P k is parallel to the plane 3x − 4y + z = 2 if it is 
perpendicular to the normal vector to the plane, 3 i − 4 j + k : the condition on M,N,P 
therefore is 3M − 4N + P = 0, or P = 4N − 3M . 

The most general such field is therefore F = M i +N j +(4N − 3M)k , where M and N 
are functions of x, y, z. 

6B. Surface Integrals and Flux 

x i + y j + z k 
6B-1 We have n = ; therefore F n = a. 

a 
· 

Flux through S = F n dS = a(area of S) = 4π a 3 .· 
S 

6B-2 Since k is parallel to the surface, the field is everywhere tangent to the cylinder, 
hence the flux is 0. 

i + j + k 1 
6B-3 √

3 
is a normal vector to the plane, so F · n = √

3 
. 

(base)(height) area of region 2
1 

2
1 (
√
2)( 

√

2
3 
√
2) 1 

Therefore, flux = = = = .√
3 

√
3 

√
3 2 

x i + y j + z k y2 

6B-4 n = ; F n = . Calculating in spherical coordinates, 
a 

· 
a 

� � 2 � π � π � π � π y 1 3flux = dS = a 4 sin3 φ sin2 θ dφ dθ = a sin3 φ sin2 θ dφdθ.

S a a 0 0 0 0


�π


Inner integral: sin2 θ(− cosφ+ 1 cos3 φ) = 4 sin2 θ;3 3 
0 

�π 

Outer integral: 3
4 3( 2

1 θ − 4
1 sin 2θ) = 3

2 πa3 .a
0 

1 

1 

1 

1 

2 

n 

S 
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i + j + k z 
6B-5 n = √

3
; F · n = √

3 
. 

� � � � � 1 � z dx dy 1 dx dy 1−y 

flux = =√
3 n k 

√
3 

(1− x − y)
1/
√
3
= (1− x − y) dx dy. 

S | · | S 0 0 

�1−y 

Inner integral: = x − 2
1 x2 − xy = 2

1 (1− y)2 . 

1 

S 

1 

0 n 
� 1 �1

1 1 1 1 
Outer integral: = 

2
(1− y)2dy =

2 
· − 

3 
· (1− y)3 =

6 
. 

0 0 
1 

x+y=1 

6B-6 z = f(x, y) = x2 + y2 (a paraboloid). By (13) in Notes V9, 

dS = (−2x i − 2y j + k ) dx dy. 

(This points generally “up”, since the k component is positive.) Since F = x i +y j +z k , 

F dS = (−2x 2 − 2y 2 + z) dxdy ,· 
S R 

where R is the interior of the unit circle in the xy-plane, i.e., the projection of S onto the 
xy-plane). Since z = x2 + y2 , the above integral 

� � � 2π � 1 

= − 
R 

(x 2 + y 2) dxdy = − 
0 0 

r 2 · r dr dθ = −2π · 
4

1 
= − π 

2 
. 

The answer is negative since the positive direction for flux is that of n, which here points 
into the inside of the paraboloidal cup, whereas the flow x i + y j + z k is generally from 
the inside toward the outside of the cup, i.e., in the opposite direction. 

x i + y j y2 

6B-8 On the cylindrical surface, n = , F n = . 
a 

· 
a 

In cylindrical coordinates, since y = a sin θ, this gives us F dS = F n dS = a2 sin2 θ dz dθ.· · 
� π/2 � k � π/2 �π/2 

Flux = a 2 sin2 θ dz dθ = a 2h sin2 θ dθ = a 2h
θ sin 2θ π 2h 

−π/2 0 −π/2 2 
− 

−π/2 

=
2 
a . 

4 

6B-12 Since the distance from a point (x, y, 0) up to the hemispherical surface is z, 

z dS 
average distance = �� 

S . 
dS 

S 

� � � 2π � π/2 

In spherical coordinates, z dS = a cosφ a 2 sinφ dφ dθ. 
S 0 0 

· 

� π/2 sin2 φ 
�π/2 

a3 a3 � 2π


Inner: = a 3 sinφ cosφ dφ = a 3( =
 . Outer: = dθ = πa3 . 
0 0 02 2 2 

πa3 a 
Finally, dS = area of hemisphere = 2πa2, so average distance = = . 

2πa2 2S 



� � � 

� � � � � 

� � � � � 

� � � 

6. VECTOR INTEGRAL CALCULUS IN SPACE 3 

6C. Divergence Theorem 

6C-1a div F = Mx + Ny + Pz = 2xy + x + x = 2x(y + 1). 

6C-2 Using the product and chain rules for the first, symmetry for the others, 

(ρn x)x = nρn−1 x x + ρn , (ρn y)y = nρn−1 y y + ρn , (ρn z)z = nρn−1 z z + ρn;
ρ ρ ρ 

2 2 2 

adding these three, we get div F = nρn−1 x + y + z
+ 3ρn = ρn(n + 3). 

ρ

Therefore, div F = 0 n = −3.
⇔ 

6C-3 Evaluating the triple integral first, we have div F = 3, therefore 

2 
div F dV = 3(vol.of D) = 3 πa3 = 2πa3 . 

3D 

To evaluate the double integral over the closed surface S1 + S2, the normal vectors are: 
x i + y j + z k 

n1 = (hemisphere S1), n2 = −k (disc S2); 
a 

using these, the surface integral for the flux through S is 

� � � � 2 2 2 � � � � 

x + y + z

S 

F · dS = 
S1 

a 
dS + 

S2 

−z dS = 
S1 

a dS, 

since x2 + y2 + z2 = ρ2 = a2 on S1, and z = 0 on S2. So the value of the surface integral is 

a(area of S1)= a(2πa2) = 2πa3 , 

1

1
which agrees with the triple integral above. 

6C-5 The divergence theorem says F dS = div F dV. · 
S D 1 

Here div F = 1, so that the right-hand integral is just the volume of the 
tetrahedron, which is 13 (base)(height)= 13 (

1
2 )(1) = 16 . 

6C-6 The divergence theorem says F dS = div F dV. · 
S D 

Here div F = 1, so the right-hand integral is the volume of the solid cone, which has 
height 1 and base radius 1; its volume is 13 (base)(height)= π/3. 

6C-7a Evaluating the triple integral first, over the cylindrical solid D, we have 

div F = 2x + x = 3x; 3x dV = 0, 
D 

since the solid is symmetric with respect to the yz-plane. (Physically, assuming the density 
is 1, the integral has the value x̄(mass of D), where x̄ is the x-coordinate of the center of 
mass; this must be in the yz plane since the solid is symmetric with respect to this plane.) 

To evaluate the double integral, note that F has no k -component, so there is no flux 
across the two disc-like ends of the solid. To find the flux across the cylindrical side, 

n = x i + y j , F n = x3 + xy2 = x3 + x(1− x2) = x, · 



� � � � � � � � � 

� � � � � � 

� � � � � 

� � 

6

� � � � � 

� � 

� � � � � � � � 

4 E. 18.02 EXERCISES 

since the cylinder has radius 1 and equation x2 + y2 = 1. Thus 

� � � 2π � 1 � 2π 

x dS = cos θ dz dθ = cos θ dθ = 0. 
S 0 0 0 

6C-8 a) Reorient the lower hemisphere S2 by reversing its normal vector; call the reori­
ented surface S′ 

2. Then S = S1 + S′ 
2 is a closed surface, with the normal vector pointing 

outward everywhere, so by the divergence theorem, 

F dS = F dS + F dS = div F dV = 0, 
S 

· 
S1 

· 
S
2 
′ 

· 
D 

since by hypothesis div F = 0. The above shows 

F dS = F dS = F dS,· − 
S′ 

· · 
S1 2 S2 

since reversing the orientation of a surface changes the sign of the flux through it. 

S 

S 

1 

2 

b) The same statement holds if S1 and S2 are two oriented surfaces having the same 
boundary curve, but not intersecting anywhere else, and oriented so that S1 and S

′ 
2 (i.e.,

with its orientation reversed) together make up a closed surface S with outward-pointing 
normal. 

6C-10 If div F = 0, then for any closed surface S, we have by the divergence theorem 

F dS = div F dV = 0. · 
S D 

Conversely: F dS = 0 for every closed surface S div F = 0. 
S 

· ⇒ 
For suppose there were a point P0 at which (div F)0 = 0 — say (div F)0 > 0. Then 
by continuity, div F > 0 in a very small spherical ball D surrounding P0, so that by the 
divergence theorem (S is the surface of the ball D), 

F dS = div F dV > 0. · 
S D 

But this contradicts our hypothesis that F dS = 0 for every closed surface S.· 
S 

6C-11 flux of F = F dn = div F dV = 3 dV = 3(vol. of D).· 
S D D 

6D. Line Integrals in Space 

6D-1 a) C : x = t, dx = dt; y = t2, dy = 2t dt; z = t3, dz = 3t2 dt; 
� � 1 

y dx+ z dy − x dz = (t2)dt+ t3(2t dt)− t(3t2 dt)

C 0


= = .= 

� 1 

(t2 +2t4 − 3t3)dt = 
t3 2t5 3t4 �1 

1 2 3 1 

3
+

5 
− 

4 3
+

5 
−

4 
−
60 0 0 

� � 1 1 
b) C : x = t, y = t, z = t; y dx+ z dy − x dz = t dt = . 

2C 0 

S2 
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6. VECTOR INTEGRAL CALCULUS IN SPACE 5 

c) C = C1 + C2 + C3; C1 : y = z = 0; C2 : x = 1, z = 0; C3 : x = 1, y = 1 
� � � � 1 

y dx+ z dy − x dz = 0 + 0 + −dz = −1. 
C C1 C2 0 

d) C : x = cos t, y = sin t, z = t; zx dx + zy dy + x dz 
C 

� 2π � 2π 

= t cos t(− sin t dt) + t sin t(cos t dt) + cos t dt = cos t dt = 0. 
0 0 

6D-2 The field F is always pointed radially outward; if C lies on a sphere centered at 
the origin, its unit tangent t is always tangent to the sphere, therefore perpendicular to the 
radius; this means F t = 0 at every point of C. Thus 

C 
F dr = 

C 
F t ds = 0.· · · 

6D-4 a) F = ∇f = 2x i + 2y j + 2z k . 

b) (i) Directly, letting C be the helix: x = cos t, y = sin t, z = t, from t = 0 to t = 2nπ, 

� � 2nπ � 2nπ 

Mdx+ Ndy + Pdz = 2 cos t(− sin t)dt+ 2 sin t(cos t)dt+ 2t dt = 2t dt = (2nπ)2 . 
C 0 0 

b) (ii) Choose the vertical path x = 1, y = 0, z = t; then 

� � 2nπ 

Mdx+ Ndy + Pdz = 2t dt = (2nπ)2 . 
C 0 

b) (iii) By the First Fundamental Theorem for line integrals, 

F dr = f(1, 0, 2nπ)− f(1, 0, 0) = 912 + (2nπ)2)− 12 = (2nπ)2 · 
C 

6D-5 By the First Fundamental Theorem for line integrals, 

C 

F · dr = sin(xyz)
�

� 

Q 
− sin(xyz)

�

� 

P 
, 

where C is any path joining P to Q. The maximum value of this difference is 1− (−1) = 2, 
since sin(xyz) ranges between −1 and 1. 

For example, any path C connecting P : (1, 1,−π/2) to Q : (1, 1, π/2) will give this 
maximum value of 2 for F dr.

C 
· 

6E. Gradient Fields in Space 

6E-1 a) Since M = x2, N = y2, P = z2 are continuously differentiable, the differential is 
exact because Nz = Py = 0, Mz = Px = 0, My = Nx = 0; f(x, y, z) = (x3 + y3 + z3)/3. 

b) Exact: M,N,P are continuously differentiable for all x, y, z, and 

Nz = Py = 2xy, Mz = Px = y2 , My = Nx = 2yz; f(x, y, z) = xy2 . 

c) Exact: M,N,P are continuously differentiable for all x, y, z, and 

Nz = Py = x, Mz = Px = y, My = Nx = 6x2 + z; f(x, y, z) = 2x3y + xyz. 

� i j k � 

6E-2 curl F = � ∂x ∂y ∂z � = (xz2 − y) i − yz2 j − x2 k . 
2 2 

� x y yz xyz � 



� � � 

6 E. 18.02 EXERCISES 

6E-3 a) It is easily checked that curl F = 0. 

b) (i) using method I: 

� (x1,y1 ,z1) � � � 

1

(x1, y1, z1)
f(x1, y1, z1) = F dr = F dr + F dr + F dr 

(0,0,0) 
· 

C1 

· 
C2 

· 
C3 

· 
C3 

x1 y1 z1 1 2 1 2 1 2 C 
= x dx + y dy + z dz = x1 + y1 + z2 . 

0 0 0 2 2 2 x1 (x1,y1) 

Therefore f(x, y, z) = 2 
1 (x2 + y2 + z2) + c. C2 

(ii) Using method II: We seek f(x, y, z) such that fx = 2xy + z, fy = x2, fz = x. 

fx = 2xy + z f = x2y + xz + g(y, z).

2 

⇒
2
fy = x + gy = x gy = 0 g = h(z)⇒ ⇒

fz = x + h′(z) = x h′ = 0 h = c⇒ ⇒ 
Therefore f(x, y, z) = x2y + xz + c. 

(iii) If fx = yz, fy = xz, fz = xy, then by inspection, f(x, y, z) = xyz + c. 

6E-4 Let F = f − g. Since ∇ is a linear operator, ∇F = ∇f −∇g = 0 

We now show: ∇F = 0 F = c.⇒ 
Fix a point P0 : (x0, y0, z0). Then by the Fundamental Theorem for line integrals, 

� P 

F (P )− F (P0) = ∇F dr = 0. · 
P0 

Therefore F (P ) = F (P0) for all P , i.e., F (x, y, z) = F (x0, y0, z0) = c. 

6E-5 F is a gradient field only if these equations are satisfied: 

Nz = Py : 2xz + ay = bxz + 2y Mz = Px : 2yz = byz My = Nx : z
2 = z2 . 

Thus the conditions are: a = 2, b = 2. 

Using these values of a and b we employ Method 2 to find the potential function f : 

fx = yz2 f = xyz2 + g(y, z); 
fy = xz2 + g

⇒ 
y 
2 
= xz2 + 2yz ⇒ 

2 
gy = 2yz ⇒ g = y2z + h(z)


fz = 2xyz + y + h′(z) = 2xyz + y h = c;
⇒ 
therefore, f(x, y, z) = xyz2 + y2z + c. 

6E-6 a) Mdx+Ndy+Pdz is an exact differential if there exists some function f(x, y, z) 
for which df = Mdx+ Ndy + Pdz; that, is, for which fx = M, fy = N, fz = P . 

b) The given differential is exact if the following equations are satisfied: 

Nz = Py : (a/2)x2 + 6xy2z + 3byz2 = 3x2 + 3cxy2z + 12yz2;

Mz = Px : axy + 2y3z = 6xy + cy3z

My = Nx : axz + 3y2z2 = axz + 3y2z2 .


Solving these, we find that the differential is exact if a = 6, b = 4, c = 2. 
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6. VECTOR INTEGRAL CALCULUS IN SPACE	 7 

c) We find f(x, y, z) using method 2: 

fx = 6xyz + y3z2 f = 3x2yz + xy3z2 + g(y, z); 
fy = 3x2z +3xy2z2 +

⇒ 
gy = 3x2z +3xy2z2 +4yz3 gy = 4yz3 g = 2y2z3 +h(z) 

2 3 2 2 2 3
⇒ 

2 2 
⇒

fz = 3x y + 2xy z + 6y z	 + h′(z) = 3x y + 2xy z + 6y z h′(z) = 0 h = c.⇒ ⇒ 
Therefore, f(x, y, z) = 3x2yz + xy3z2 + 2y2z3 + c. 

S 

n6F. Stokes’ Theorem 

6F-1 a) For the line integral, F dr = xdx + ydy + zdz = 0, · 
C C 

since the differential is exact.	 C 

� i j k �	 � � 

For the surface integral, ∇×F = ∂x ∂y ∂z = 0, and therefore 
S 

∇×F ·dS = 0. 
� x y	 z � 

b) Line integral: ydx+ zdy + xdz = ydx, since z = 0 and dz = 0 on C. 
C C 

� 2π � 2π 

Using x = cos t, y = sin t, 
0 

− sin2 t dt = − 
0 

1− cos 2t
dt = −π. 

2 

� i j k � 

Surface integral: curl F =	
� 

∂x ∂y ∂z 
� 

= − i − j − k ; n = x i + y j + z k

� y z x �


S 

∇× F) · n dS = − 
S 

(x + y + z) dS. 

To evaluate, we use x = r cos θ, y = r sin θ, z = ρ cosφ. r = ρ sinφ, dS = ρ2 sinφ dφdθ; 
note that ρ = 1 on S. The integral then becomes 

� 2π � π/2 

− 
0 0 

[sinφ(cos θ + sin θ) + cosφ] sinφ dφ dθ 

�	 �π/2 � � 

φ sin 2φ 1	 π 1 
Inner: − (cos θ + sin θ)( 

2 
− 

4 
) + 

2
sin2 φ 

0 

= − (cos θ + sin θ)
4
+

2 
; 

� 2π 1	 π 
Outer: 

2 
− (cos θ + sin θ) dθ = −π. 

40 
− 

6F-2 The surface S is: z = −x − y, so that f(x, y) = −x − y. 

n dS = 〈−fx,−fy, 1〉 dx dy = 〈1, 1, 1〉 dx dy. 
(Note the signs: n points upwards, and therefore should have a positive k-component.) 

� i j k � 

� y z x �

curl F = 

� 

∂x ∂y ∂z 
� 

= − i − j − k 

Therefore 
S 

curl F · n dS = − 
S′ 

3 dA = −3π, where S′ is the projection of S, i.e., 

the interior of the unit circle in the xy-plane. 

As for the line integral, we have C : x = cos t, y = sin t z = − cos t − sin t, so that 
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8 E. 18.02 EXERCISES 

� � 2π� � 

ydx+ zdy + xdz = − sin2 t − (cos2 t + sin t cos t) + cos t(sin t − cos t) dt 
C 0 

� 2π � 2π� � 

= (− sin2 t − cos 2 t − cos 2 t) dt = −1−
2

1
(1 + cos 2t) dt = −

2

3 · 2π = −3π. 
0 0 

6F-3 Line integral: yz dx+ xz dy + xy dz over the path C = C1 + . . . + C4: 
C 

= 0, since z = dz = 0 on C1; 
C1 

� � 1


C2 

= 
0 

1 · 1 dz = 1, since x = 1, y = 1, dx = 0, dy = 0 on C2;


� � 0


ydx+ xdy = xdx + xdx = −1, since y = x, z = 1, dz = 0 on C3;

C3 1


= 0, since x = 0, y = 0 on C4. 
C4 

� � � � � 

Adding up, we get F dr = + + + = 0. For the surface integral, 
C 

· 
C1 C2 C3 C4 

� i j k � � � 

curl F = ∂x ∂y ∂z = i (x − x)− j (y − y) + k (z − z) = 0; thus curl F dS = 0. · 
� yz xz xy � 

6F-5 Let S1 be the top of the cylinder (oriented so n = k ), and S2 the side. 

(1,1,0) 

(1,1,1) 

C
1 

C2 

C
3 

C
4 

� i j k � 

a) We have curl F = ∂x ∂y ∂z = −2x j + 2k . 
� −y x x2 

� 
h 

For the top: curl F n dS = 2 dS = 2(area of S1) = 2πa2 . 

S 

S 

1 

2 

C · 
S1 S1 

x i + y j
For the side: we have n = , and dS = dz a dθ, so that 

a 
· 

� � � 2π � h � 2π �2π 

curl F n dS = 
−2xy 

a dz dθ = −2h(a cos θ)(a sin θ) dθ = −ha2 sin2 θ = 0. 
S2 

· 
0 0 a 0 0 

Adding, curl F dS = + = 2πa2 .· 
S S1 S2 

b) Let C be the circular boundary of S, parameterized by x = a cos θ, y = a sin θ, z = 0. 
Then using Stokes’ theorem, 

� � � � 2π 

curl F dS = −y dx+ x dy + x 2 dz = (a 2 sin2 θ + a 2 cos 2 θ) dθ = 2πa2 . 
S C 0 

· 

6G. Topological Questions 

6G-1 a) yes b) no c) yes d) no; yes; no; yes; no; yes 

6G-2 Recall that ρx = x/ρ, etc. Then, using the chain rule, 

curl F = (nρn−1 z
y

ρ 
− nρn−1 y

z x z x y
) i + (nρn−1 z

ρ 
− nρn−1 x ) j + (nρn−1 y

ρ 
− nρn−1 x )k . 

ρ ρ ρ
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Therefore curl F = 0. To find the potential function, we let P0 be any convenient 
starting point, and integrate along some path to P1 : (x1, y1, z1). Then, if n =6 −2, we have 

� � P1 
� P1 1 

d(ρ2) 
C 

· 
P0 P0 

2 
� P1 ρn+2 �P1 ρn+2 ρn+2 ρn+2 

= 
P0 

ρn+1dρ = 
n + 2 P0 

= 
n 
1 

+ 2 
−

n 
0 

+ 2 
= 

n 
1 

+ 2 
+ c, since P0 is fixed. 

F dr = ρn(x dx + y dy + z dz) = ρn 

ρn+2


Therefore, we get F = ∇
n + 2

, if n =6 −2.

� P1 dρ 

If n = −2, the line integral becomes = ln ρ1 + c, so that F = ∇(ln ρ). 
ρP0 

6H. Applications and Further Exercises 

6H-1 Let F = M i + N j + P k . By the definition of curl F, we have 

∇× F = (Py −Nz) i + (Mz − Px) j + (Nx −My)k , 

∇ · (∇× F) = (Pyx −Nzx) + (Mzy − Pxy) + (Nxz −Myz) 

If all the mixed partials exist and are continuous, then Pxy = Pyx, etc. and the right-hand 
side of the above equation is zero: div (curl F) = 0. 

6H-2 a) Using the divergence theorem, and the previous problem, (D is the interior of S), 

curl F dS = div curl F dV = 0 dV = 0.· 
S D D 

b) Draw a closed curve C on S that divides it into two pieces S1 and S2 both having C 
as boundary. Orient C compatibly with S1, then the curve C

′ obtained by reversing the 
orientation of C will be oriented compatibly with S2. Using Stokes’ theorem, 

� � � � � � � � 

curl F dS = curl F dS + curl F dS = F dr + F dr = 0,· · · · 
′ 

· 
S S1 S2 C C

since the integral on C ′ is the negative of the integral on C. 
S 

S1 

2C 

C 

Or more simply, consider the limiting case where C has been shrunk to a point; even as 
a point, it can still be considered to be the boundary of S. Since it has zero length, the line 
integral around it is zero, and therefore Stokes’ theorem gives 

curl F dS = F dr = 0.· · 
S C 

6H-10 Let C be an oriented closed curve, and S a compatibly-oriented surface having C as 
its boundary. Using Stokes’ theorem and the Maxwell equation, we get respectively 

� � � � � � � � � 

1 ∂E 1 d ∇×B·dS = B·dr and ∇×B·dS = 
c ∂t 

·dS = 
c dt 

E ·dS. 
S C S S S 

1 d 
Since the two left sides are the same, we get B dr = E dS. 

C 

· 
c dt S 

· 

In words: for the magnetic field B produced by a moving electric field E(t), the magneto­
motive force around a closed loop C is, up to a constant factor depending on the units, the 
time-rate at which the electric flux through C is changing. 
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