6. Vector Integral Calculus in Space

6A. Vector Fields in Space

6A-1 a) the vectors are all unit vectors, pointing radially outward.
b) the vector at P has its head on the y-axis, and is perpendicular to it

6A-2 L(—zi-—yj—zk)

6A-3 w(—zj +yk)

6A-4 A vector field F = Mi + Nj + Pk is parallel to the plane 3z — 4y + z = 2 if it is
perpendicular to the normal vector to the plane, 3i —4j + k: the condition on M, N, P
therefore is 3M —4N + P =0, or P =4N — 3M.

The most general such field is therefore F = Mi+ Nj + (4N —3M )k, where M and N
are functions of x,y, 2.

6B. Surface Integrals and Flux

6B-1 We have n = w; therefore F-n =a.
a

Flux through S = // F-ndS = a(area of S) = 47 a’.
s

6B-2 Since k is parallel to the surface, the field is everywhere tangent to the cylinder,
hence the flux is 0.

i+j+k 1
6B-3 1yt k is a normal vector to the plane, so F-n=—.
V3 V3
Therefore, flux — area of region _ 1 (base) (height) _ %(ﬂ)(@x/ﬁ) _ 1
V3 V3 V3 2
k 2
6B-4 = ritytek F- y—. Calculating in spherical coordinates,
flux = // y ds = / / a*sin® ¢sin® 0 dp df = a / / sin® ¢ sin® 0 d¢de.
Inner integral: sin® 6(— cos ¢ + 3 cos qﬁ)} = %sm 0;
0

Outer integral: 3a®(36 — 1sin 20)} = Zrad.
0
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6B-5 HZM; Fone =
7
z drdy // dq:dy //1 Y
= (1—2—y)dzdy.
<= | v YNE &
Inner integral: :x—éﬁ—xy] :%(l—y)2.
0

1
1 1 1 .
Outer integral: = / —-(1- y)zdy =—.——-(1- y)3 —
0 2 2 3

6B-6 2= f(v,y) =22+ y* (aparaboloid). By (13) in Notes V9,
dS = (—2zi —2yj + k)dxdy.

(This points generally “up”, since the k component is positive.) Since F=zi+yj+zk,

//SF~dS://R(—2x2—2y2+z)dxdy

where R is the interior of the unit circle in the xy-plane, i.e., the projection of S onto the
ry-plane). Since z = x? 4+ y%, the above integral

27 1 1
—//(x2+y2)dxdy=—/ /Tz-rdrd9=—27r-f=—z.
R o 0 4 2

The answer is negative since the positive direction for flux is that of n, which here points
into the inside of the paraboloidal cup, whereas the flow zi + yj + zk is generally from
the inside toward the outside of the cup, i.e., in the opposite direction.

. . 2
6B-8 On the cylindrical surface, n = M, F-n=21.
a a

In cylindrical coordinates, since y = asin 6, this gives us F-dS =F -ndS = a?sin® 0 dz db.

/2 k /2 0 in 20 /2
Flux 7/ / a2sm29dzd9:a2h/ sin20d9a2h< _ s ) = Tan.
w/2J0 —7/2 2 4 —7/2 2

6B-12  Since the distance from a point (x,y,0) up to the hemispherical surface is z,

JJszdS
JIsds

27 pm/2
In spherical coordinates, // zdS = / / acos ¢ - a?sin ¢ de db.
s

average distance =

/2 3 3 2w
sin” 9 a—. Quter: = @ d = ma’.
2 ], 2 2 Jo

/2
Inner: = a3/ sin ¢ cos ¢ dop = a®(
0

Finally, / / dS = area of hemisphere = 2ma?, so average distance = ™o_9
S s
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6C. Divergence Theorem
6C-la divF=M,+ N, + P, =2zy+a+z=2x(y+1).

6C-2  Using the product and chain rules for the first, symmetry for the others,

(p"x)e = np 1;rﬂ+p, (P"y)y =np 1;y+p, (P"2). = np 1;Z+p;

n_le —|—y2 + 22

adding these three, we get div F =np + 3p" = p"(n+3).

Therefore, div F =0 < n=-3.

6C-3 Evaluating the triple integral first, we have div F = 3, therefore

2 . ,
/// div FdV = 3(vol.of D) =3 gmd = 27a®.
D

To evaluate the double integral over the closed surface S; + S, the normal vectors are:

. . K
n; = W (hemisphere S7), ny = —k (disc S2);

using these, the surface integral for the flux through S is

2 2 2
//F-dS:// wdSJr// —zdS:// ads.
S S a So S1

since 2 +y? + 22 = p2 =a? on Sy, and z =0 on Sy. So the value of the surface integral is
a(area of S1)= a(2ma?) = 2ma®,

which agrees with the triple integral above.

6C-5 The divergence theorem says // F.dS = /// div FdV.
s D
Here div F = 1, so that the right-hand integral is just the volume of the

tetrahedron, which is £ (base)(height)= 1(3)(1) = ¢. ’

6C-6 The divergence theorem says // F.-dS = /// div FdV.
s D

Here div F = 1, so the right-hand integral is the volume of the solid cone, which has
height 1 and base radius 1; its volume is § (base)(height)= /3.

6C-Ta Evaluating the triple integral first, over the cylindrical solid D, we have

div F =22 + =z = 3z; ///3de=O,
D

since the solid is symmetric with respect to the yz-plane. (Physically, assuming the density
is 1, the integral has the value Z(mass of D), where Z is the z-coordinate of the center of
mass; this must be in the yz plane since the solid is symmetric with respect to this plane.)
To evaluate the double integral, note that F has no k-component, so there is no flux
across the two disc-like ends of the solid. To find the flux across the cylindrical side,

n=zi+vyj, F-n=2+ay?=23+2(1-2°) =z,
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since the cylinder has radius 1 and equation x2 + y? = 1. Thus

27 1 27
//de:/ / cosedzdﬁz/ cosfdf = 0.
S 0 0 0

6C-8 a) Reorient the lower hemisphere S by reversing its normal vector; call the reori-
ented surface S). Then S = 57 + S} is a closed surface, with the normal vector pointing
outward everywhere, so by the divergence theorem,

[ ] v [ v ffoen o

since by hypothesis div F = 0. The above shows

//le'dS:_//;,F'dsz//SZF'dSv

since reversing the orientation of a surface changes the sign of the flux through it.

/
2

b) The same statement holds if S; and Sy are two oriented surfaces having the same
boundary curve, but not intersecting anywhere else, and oriented so that S; and S} (i.e., So
with its orientation reversed) together make up a closed surface S with outward-pointing
normal.

6C-10 If div F = 0, then for any closed surface S, we have by the divergence theorem

//SF-dS=///DdiVFdV:O.

Conversely: / / F - dS = 0 for every closed surface S = div F =0.
s

For suppose there were a point Py at which (div F)g # 0 — say (div F)g > 0. Then
by continuity, div F > 0 in a very small spherical ball D surrounding Py, so that by the
divergence theorem (S is the surface of the ball D),

//SF.dS:///DdiVFdV > 0.

But this contradicts our hypothesis that / / F - dS = 0 for every closed surface S.
S

6C-11 ﬂuxofF://F-dn:/// dideV:/// 3dV = 3(vol. of D).
s D D

6D. Line Integrals in Space

6D-1 a) C: z=t dov=dt; y=1t2 dy=2dt; z=13 dz=3t2dt;
1
/ydx+zdy—xdz = / (t3)dt + 3 (2t dt) — (3t dt)
c

0
1 3 5 471
25 3t 1 2 3 1
= P2t =30t = o+ ——F| = s+--7 = ——.
/O( * ) 375 4}0 37571

1

1

b) C: z=t, y=t, z=1 /yderzdyfxdz = / tdt = —.
c 0 2
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c) C=C1+Cy+Cs; Cr:y=2=0; Cy:x=12=0;, C3:z=1y=1

1
/yderzdy—xdz = / O+/ O+/ —dz = —1.
C C1 Co 0

d) C:x=cost, y=sint, z=1; zedx + zydy + x dz
c

27 27
= / tcost(—sintdt) + tsint(costdt) + costdt = / costdt = 0.
0 0

6D-2 The field F is always pointed radially outward; if C' lies on a sphere centered at
the origin, its unit tangent t is always tangent to the sphere, therefore perpendicular to the
radius; this means F - t = 0 at every point of C. Thus [, F-dr = [,F-tds = 0.

6D-4 a) F=Vf=2xi+2yj +2zk.
b) (i) Directly, letting C be the helix: = cost, y =sint, z =t, from t = 0 to t = 2nm,

2nm 2nm
/ Mdx + Ndy + Pdz = / 2cost(—sint)dt + 2sint(cost)dt 4 2t dt = / 2t dt = (2nm)%.
C 0 0

b) (ii) Choose the vertical path x =1, y =0, z = ¢; then

2nm
/ Mdx + Ndy + Pdz = / 2t dt = (2nm)?.
C 0

b) (iii) By the First Fundamental Theorem for line integrals,
/ F-dr = f(1,0,2n7) — f(1,0,0) = 91% + (2n7)?) — 12 = (2n7)?
c
6D-5 By the First Fundamental Theorem for line integrals,

F - dr = sin(xyz —sin(zyz)| ,

/ (ay2)] | sin(oy:)]

where C is any path joining P to @. The maximum value of this difference is 1 — (—1) = 2,
since sin(zyz) ranges between —1 and 1.

For example, any path C connecting P : (1,1,—7/2) to @ : (1,1,7/2) will give this
maximum value of 2 for [ F - dr.

6E. Gradient Fields in Space

6E-1 a) Since M = 22, N =y?, P = 22 are continuously differentiable, the differential is
exact because N, =P, =0, M, =P, =0, M, =N, =0; f(z,y,2) = (23 +y>+23)/3.

b) Exact: M, N, P are continuously differentiable for all z,y, z, and
Nz:PyZQx:% Mz:Pa::y27 My:szzyZ; f($7y,2):-'17y2~
¢) Exact: M, N, P are continuously differentiable for all z,y, z, and
N,=P,=z, M,=P,=y, M,=N,=62>+z f(z,y,2)=22%+ zyz.
i j k
6E-2 cwlF=|09, 9, 0, |=(x2?-y)i—yz?j—2%k.
22y yz wyz?
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6E-3 a) It is easily checked that curl F = 0.
b) (i) using method I:

(#1,91,21) X Vi, Z.)
f(xl,y1,Z1)=/ F-dr:/ F~dr—|—/ F~dr—|—/ F-dr %%
(0,0,0) 1 Cs Cs (oN
o v = 1 1 1
:/ xdx—|—/ ydy+/ zdzzﬁmf—kiyf—kizg. c
0 0 0 X (%)

Therefore  f(z,y,2) = (2?2 +y* +22) +c. .

(ii) Using method II: We seek f(z,y,z) such that f, = 2zy+ 2, f, =22, f. ==z.

fo=22y+2 = [f=2y+rz+g(y2).
fy:x2—|—gy=x2 = g,=0 = g
fr=x+h(z)=2 = h=0 = h=c

Therefore f(x,y,z) = 2%y + 22 + c.
(iii) If fo =yz, fy =z, f.=uwzy, then by inspection, f(z,y,2) = zyz +c.

6E-4 Let FF= f —g. Since V is a linear operator, VF=Vf-Vg = 0
We now show: VF =0 = F=c.
Fix a point Py : (x0,Yo0,20). Then by the Fundamental Theorem for line integrals,
P

F(P)—-F(PR) = VF -dr =0.
Py

Therefore F(P) = F(Py) for all P, i.e., F(x,y,z) = F(zq, Yo, 20) = ¢

6E-5 F is a gradient field only if these equations are satisfied:

N, =Py: 2zz+ay = brz + 2y M, =P, : 2yz=byz My:Nm:zzzzz.
Thus the conditions are: a =2, b= 2.
Using these values of a and b we employ Method 2 to find the potential function f:

fa=y2? = f=2yz®+g(y,2);
fy=22+g, =222 +2yz = g,=2yz = g=v’2+h(2)
f=2ryz+1>+ 1 (z)=22yz+y> = h=c

therefore, f(z,y,2) = 2yz® + y*z +c.

6E-6 a) Mdx+ Ndy+ Pdz is an exact differential if there exists some function f(x,y, 2)
for which df = Mdx + Ndy + Pdz; that, is, for which f, =M, f, =N, f.=P.

b) The given differential is exact if the following equations are satisfied:

N, =P,: (a/2)2? + 6zy*z + 3byz? = 322 + 3cxy’z + 12y2%;
M,=P,: axy+2y3z=6xy+cy’z
My, =N,: axz+ 31222 = axz + 3y222.

Solving these, we find that the differential is exact if a =6, b=4, c=2.
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¢) We find f(z,y, z) using method 2:

fo=6zyz+1y°22 = f=32%yz+2y%2% + g(y, 2);
[y = 32224 32y?22 + g, = 3222 + 32y + 4y = g, =4y2* = g=2y%2+h(2)
[ =322y + 2xy32 + 6y222 + B/ (2) = 322y + 2032 + 6y%22 = MW (2)=0 = h=c

Therefore,  f(x,y,2) = 3x%yz + xy32? + 2922 + c.

6F. Stokes’ Theorem n
S
6F-1 a) For the line integral, 7{ F-dr= ]4 rdx + ydy + zdz = 0,
c c
since the differential is exact. C
i j k
For the surface integral, VxF =10, 0, 0.|=0, and therefore // VxF-dS =0.
x Yy oz 5
b) Line integral: ?{ ydx + zdy + zdz = j{ ydx, since z =0 and dz =0 on C.
c c
2 27
1 — cos2t
Using « = cost, y =sint, / fsin2tdt:f/ ﬁdt:fm
0 0 2
i j k
Surface integral: curl F =0, 0y 0,|=—-i—-j — k; n=zi+yj+zk
y z

//SVxFyndS:f//S(:cherz)dS.

To evaluate, we use = =rcosf, y=rsinf, z=pcos¢. r=psing, dS = p?sin¢dodo;
note that p =1 on S. The integral then becomes

2n /2
- / / [sin ¢(cos @ + sin @) + cos @] sin ¢ de d
o Jo

. w/2
¢ sin2¢ 1., B ) T 1]
5 1 )+281n gi)o = (cos@—i—sm9)4+2 ;

Inner: — [(cos 0 + sin ) (

27
Outer: / (—1 — (cosf + sin@)ﬁ) df = —m.
, 2 1

6F-2 The surface S is: z = —x — y, so that f(z,y) = —z — y.
ndS = (~fo, —fy, 1) dedy = (1,1,1)dz dy.

(Note the signs: n points upwards, and therefore should have a positive k-component.)

i j k
cul F=10, 9y 0.|=—-i—-j—k
Yy oz

Therefore // curl F-ndS = — // 3dA = —3m, where S’ is the projection of 9, i.e.,
S ’
the interior of the unit circle in the xy-plane.

As for the line integral, we have C': z = cost, y =sint z = —cost —sint, so that
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27
7{ ydz + zdy + zdz = / [f sin?t — (cos®t + sint cost) + cost(sint — cos t)} dt
© 27 0 27 1 3
= / (—sin®t — cos®t — cos®t) dt = / [—1 -1+ cos2t)] dt = —— - 2m = —3m.
6F-3 Line integral: % yzdx + zzdy + vy dz over the path C =C; 4 ...+ Cy:
C
/ =0, since z=dz=0on Cq;
Cy

1
/ :/1-1dz:17 sincex=1, y=1, de =0, dy =0 on Cy;
CQ 0

0
/ yda:+:rdy:/ xdr + xdx = —1, sincey==x, z=1, dz =0 on Cs;
Cg 1

/ =0, sincex =0, y=0on Cy.

Adding up, we get % F.-dr = / +/ +/ +/ = 0. For the surface integral,
c Ci cy Jos  Jou
i j k
curl F =0, 0y 0.|=li(z—2)—jly—y)+ k(z—2)=0; thus//curlF~dS:O.
yz Tz Y

6F-5 Let Sy be the top of the cylinder (oriented so n = k), and Sy the side.

i j k
a) We have curtl F=|0, 0, 0,|=—2zj +2k.
—y x  x? h L)
For the top: // curl F-ndS = // 2dS = 2(area of S;) = 2ma’. c
Sl Sl
For the side: we have n = w and dS = dz - adf, so that
a

_2 27 2m
xyadz do = / —2h(acos @) (asinf)dd = —ha’sin?0| =0.
0

2m
// curl F-ndS = / /
Adding, // curl F - dS = // // = 2ma’.
Sl Sz

b) Let C be the circular boundary of S, parameterized by = acosf, y = asinf, z = 0.
Then using Stokes’ theorem,

2m
// cur1F~dS:% —ydm+xdy+m2dz:/ (a®sin? 0 + a? cos? 0) df = 2ma?.
5 c 0

6G. Topological Questions
6G-1 a)yes b)no c¢)yes d)no;yes; no; yes; no; yes
6G-2  Recall that p, = x/p, etc. Then, using the chain rule,

curl F = (np" 'z Lo np"ty E) i+ (np" 'z T np"lx E)j + (np" "ty T np"
p p p p p
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Therefore curl F = 0. To find the potential function, we let Py be any convenient
starting point, and integrate along some path to P; : (x1,y1,21). Then, if n # —2, we have

Py Py 1
/ F.-dr = / pM(xde+ydy+zdz) = / " = d(p?)
C Po PO 2
P n+2 n+2 n+2 n+42
_ n+1d :p _pl pO pl 3 P : ﬁ d
/Pop D n—l—Z} nT3  ma3 = nia T o since Fois fixed
pn+2
Therefore, we get F =V , ifn#£ =2
n+2
If n = —2, the line integral becomes / — =1Inp; + ¢, so that F = V(lnp).
Py, P

6H. Applications and Further Exercises

6H-1 Let F=Mi+ Nj + Pk. By the definition of curl F, we have
VX F = (Py— N.)i + (M. - P)j + (N, — M)k,
V- (VXF)= (P — Noz) + (Moy — Pry) + (N — My)

If all the mixed partials exist and are continuous, then P, = Py, etc. and the right-hand
side of the above equation is zero: div (curl F) = 0.

6H-2 a) Using the divergence theorem, and the previous problem, (D is the interior of 5),

//curlF~dS:/// divcurleV:/// 0dV =0.
S D D

b) Draw a closed curve C on S that divides it into two pieces S; and Sy both having C
as boundary. Orient C' compatibly with S;, then the curve C’ obtained by reversing the
orientation of C' will be oriented compatibly with Ss. Using Stokes’ theorem,

//curlF-dS:// curlF~dS—|—// curlF-dS:%F-dr—l—j{ F-dr=0, }
s 54 S, c el y

since the integral on C” is the negative of the integral on C.

Or more simply, consider the limiting case where C has been shrunk to a point; even as
a point, it can still be considered to be the boundary of S. Since it has zero length, the line
integral around it is zero, and therefore Stokes’ theorem gives

//curlF-dS = fF-dr = 0.
S c

6H-10 Let C be an oriented closed curve, and S a compatibly-oriented surface having C' as
its boundary. Using Stokes’ theorem and the Maxwell equation, we get respectively

//VXB-dSZ}{ B.dr and //VXB -dS = // 18E / E.dS.
S C s C (975 Cdt

Since the two left sides are the same, we get ]{ B dr=-— // - dS.
c

In words: for the magnetic field B produced by a moving electric field E(t), the magneto-
motive force around a closed loop C' is, up to a constant factor depending on the units, the
time-rate at which the electric flux through C' is changing.
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