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V15.2-3 Relation to Physics 

The three theorems we have studied: the divergence theorem and Stokes’ theorem in 
space, and Green’s theorem in the plane (which is really just a special case of Stokes’ theo­
rem) are widely used in physics and continuum mechanics, in the study of fields, potentials, 
heat flow, wave motion in liquids, gases, and solids, and thermodynamics, to name some of 
the uses. Often partial differential equations which model some physical situation are de­
rived using the vector integral calculus theorems. This section is devoted to a brief account 
of where you will first meet the theorems: in electromagnetic theory. 

2. Application to Maxwell’s equations. 

Each of Maxwell’s equations in electromagnetic theory can be written in two equivalent 
forms: a differential form which involves only partial derivatives, and an integrated form 
involving line, surface, and other multiple integrals. 

In a sense we have already seen this with our criterion for conservative fields; we assume 
F is continuously differentiable in all of 3-space. Then the integrated form of the criterion 
is on the left, and the differential form is on the right: 

F · dr = 0 for all closed C ⇔ curl F = 0 for all x, y, z . 
C 

And we know that it is Stokes’ theorem which provides the bridge between these two equiv­
alent forms of the criterion. 

The situation with respect to Maxwell’s equations is similar. We consider here two of 
them, as typical. 

Gauss-Coulomb Law. Let E be an electrostatic field, arising from a distribution in space 
of positive and negative electric charge. Then the Gauss-Coulomb Law may be written in 
either of the two forms 

(8) ∇ · E = 4πρ, ρ = charge density; (differential form) 

(8′) E · dS = 4πQ, Q = total net charge inside S. (integrated form) 
S 

These are two equivalent statements of the same physical law. The integrated form is 
perhaps a little easier to understand, since the left hand side is the flux of E through S, which 
is a more intuitive idea than div E. On the other hand, quite a lot of technique is required 
actually to calculate the flux, whereas very little is needed to calculate the divergence. 

Neither (8) nor (8′) is mathematics — both are empirically established laws of physics. 
But their equivalence is a purely mathematical statement that can be proved by using the 
divergence theorem. 

Proof that (8) ⇒ (8′). 

Let D be the interior of the closed surface S. Then 

E · dS = ∇ · E dV by the divergence theorem; 
S D 

= 4π ρ dV by (8) 
D 

= 4πQ , by definition of ρ and Q. 
1 
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2 V15.2-3 RELATION TO PHSYISCS 

Proof that (8′) ⇒ (8). 

We reason by contraposition: that is, we show that if (8) is false, then (8′) must also be 
false. 

If (8) is false, this means that we can find some point P0 : (x0, y0, z0) where E is defined 
and such that ∇ · 6 4πρ at P0; we write this inequality as E = 

∇ · 6 0, at P0.E − 4πρ = 

Say the quantity on the left is positive at P0. Then by continuity, it is also positive in the 
interior of a small sphere S0 centered at P0; call this interior B0. Then 

(∇ · E − 4πρ) dV > 0 , 
B0 

which we write 

∇ · E dV > 4π ρ dV. 
B0 B0 

The integral on the right gives the total net charge Q0 inside S0; applying the divergence 
theorem to the integral on the left, we get 

E · dS > 4πQ0 
S0 

which shows that (8′) is also false, since it fails for S0. � 

Faraday’s Law A changing magnetic field B(x, y, z; t) produces an electric field E. The 
relation between the two fields is given by Faraday’s law, which can be stated (in suitable 
units) in two equivalent forms (c is the velocity of light): 

1 ∂B 
(9) ∇×E = − differential form 

c ∂t 
1 d 

(9 ′ ) E · dr = − B · dS integrated form 
c dt C S 

As before, it is the integrated form which is more intuitive, though harder to calculate. The 
line integral on the left is called the electromotive force around the closed loop C; Faraday’s 
law (9 ′ ) relates it to the magnetic flux through any surface S spanning the loop C. 

A few comments on the two forms. The derivative in (9) is taken by just differentiating 
each component of B with respect to the time t. It is a partial derivative, since the com­
ponents of B are also functions of x, y, z. In (9′) on the other hand we have an ordinary 
derivative, since after the integration, the flux is a function of t alone. 

It is understood in physics that on S the positive direction for flux and the positive 
direction on C must be compatibly chosen. 
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V15.2-3 RELATION TO PHYSICS 3 

The magnetic flux through S is the same for all surfaces S spanning the loop C. (This 
is a consequence of the physical law ∇ · B = 0.) As a result, one speaks simply of “the flux 
through the loop C”, meaning the flux through any surface spanning C, i.e. having C as 
its boundary. 

Once again, though (9) and (9′) both express the same physical law, the equivalence 
between them is a mathematical statement; to prove it we use Stokes’ theorem. 

Proof that (9) ⇒ (9′), 

E · dr = ∇×E · dS, by Stokes’ theorem, 
C S 

1 ∂B 
= − · dS, by (9) 

c S ∂t 

1 d 
= − B · dS , 

c dt S 

if B has a continuous derivative and S is smooth, and finite in extent and in area. (This 
last equality is fairly subtle, and is taken up in theoretical advanced calculus courses.) � 

Proof that (9′) ⇒ (9). We show that if (9) is false, then (9′) is false: 

1 ∂B 
If (9) is false, this means that at some point P0, ∇×E 6= − ; we write this 

c ∂t 

1 ∂B 
(10) ∇×E + 6 0.= 

c ∂t 

This means that at least one of the components of this vector is not 0 at P0; 
say it is the i -component, and it’s positive. Then by continuity it will remain 
positive in a small ball around P0. Inside this little ball, draw a little disc 
S0 as shown with center at P0, having normal vector i ; orient its circular 
boundary C0 compatibly. 

Since the vector on the left in (10) has a positive i -component on S0, 

1 ∂B 
∇×E + · dS > 0, 

c ∂t S0 

which we may write 

1 ∂B 
∇×E · dS > − · dS; 

c ∂t S0 S0 

applying Stokes’ theorem to the left-hand side, and interchanging the order of differentiation 
and integration on the right (this is valid under the reasonable hypotheses we stated before), 
we get 

1 d 
E · dr > − B · dS, 

C c dt S 

which shows the integrated form (9 ′ ) is false for this little circle and disc, and therefore not 
true in general. � 

i 

S0 

P0 

C0 
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3. Harmonic functions in space. 

A harmonic function in space is by definition a function f(x, y, z) which satisfies Laplace’s 
equation ∇2f = 0, or written out (see (5)): 

∂2f ∂2f ∂2f 
+ + = 0 . 

∂x2 ∂y2 ∂z2 

For example, the potential function for an electrostatic field E is harmonic in any region of 
space which is free of electrostatic charge. Similarly, the potential function for a gravitational 
field F is harmonic in any region where there is no mass. These statements are mathematical 
consequences of physical laws, and therefore are also physical laws — i.e., experimental facts, 
not mathematical facts. 

To see why the potential function for E is harmonic, suppose we are in a simply-connected 
region of space where there is no charge. We then have 

Gauss-Coulomb law ∇ · E = 0 since ρ = 0 in the region 

Faraday’s law ∇×E = 0; 

the second equation is valid since the field arises from a distribution of static electric charges 
— there is no changing magnetic field. Faraday’s law shows that E is conservative, so that 
it has a (mathematical) potential function f(x, y, z); the physical potential function would 
be −f(x, y, z). By the Gauss-Coulomb law, noting that E = ∇f , we get 

∇ · E = ∇ · ∇f = 0, or ∇2f = 0, 

showing that f(x, y, z) is a harmonic function. 

Because harmonic functions can represent potential functions, there is great interest in 
finding harmonic functions in a region D of space. Typically, one prescribes the values that 
f(x, y, z) should have on the boundary of D, and then searches analytically (or numerically 
by computer) for the values of f(x, y, z) inside D. In this work, the divergence theorem 
gives an important theoretical tool; some of the Exercises use it to explore the situation a 
little further. 

In general, this aspect of the subject properly belongs to the realm of partial differential 
equations, i.e., to Differential Equations and Advanced Calculus courses: see you there, 
maybe. 
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