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Operators, polynomial signals, resonance 
 
[1] Operators 
[2] Resonance 
[3] Polynomial signals 
 
 
Several different topics today, and a respite from the gain game. 
 
[1] Operators  
 
                   function  
Just as  number  ------------>  number  
 
                   operator 
       function  ------------>  function 
 
 
The *differentiation operator  D  takes  x  to  x' :  Dx = x' . 
 
For example,  D sin(t) = cos(t) ,  D x^n = n x^{n-1} ,  D8 = 0 . 
 
We can iterate:  D^2 = x" .   
 
There's also the "identity operator":  Ix = x 
 
And we can take linear combinations of operators:   
 
           (D^2 + 2D + 2I) x = x" + 2x' + 2x . 
 
The characteristic polynomial here is  p(s) = s^2 + 2s + 2 , and 
it's irresistible to write  
 
                  D^2 + 2D + 2I  =  p(D) 
 
so                x" + 2x' + 2x  =  p(D) x 
 
This formalism lets us discuss linear equations of higher order with 
no extra work. Such an equation has the form  
 
      an x^{(n)} + ... + a1 x' + a0 x  =  q(t)      (*) 
 
It has a characteristic polynomial   
 
      p(s) = a_n s^n + ... + a_1 s + a_0 
 
and so it can be written  
 
      p(D) x = q(t)  
 
Now we can say that the *operator* 
 
      p(D) = an D^n + ... + a_1 D + a_0 I  
 
represents the system. This is a "linear, time-invariant differential  



operator."  In the systems and signals yoga, an input signal  
determines a function  q(t) , and the system response  x  satisfies  Lx = q .   
We could write  
 
                           x = L^{-1} q 
 
and indeed most of this course is about finding ways to "invert" these  
operators.  
 
 
The Exponential Response Formula lets us find a solution of  
 
      p(D) x = B e^{rt} 
 
very efficiently, as long as  
(1) r is not a root of  p(s)  and   
(2) B is constant  
 
Today we'll see how to deal with the first limitation.  
The second will come on Wednesday. 
 
 
[2] For example suppose we want to solve  x" - 4x = e^{-2t} .  p(s) = s^2-4 
vanishes at  r = -2 .  We can't apply ERF. To see what we CAN do, I want 
to recall where ERF came from:  [Slide] 
  
    
     p(s) = a_n s^n + ... + a_1 s + a_0 
 
     a_0]         e^{rt} =     e^{rt} 
     a_1]     D   e^{rt} = r   e^{rt} 
     a_2]     D^2 e^{rt} = r^2 e^{rt} 
 
     ...                ... 
 
     a_n]     D^n e^{rt} = r^n e^{rt} 
             ------------------------ 
             p(D) e^{rt} = p(r) e^{rt}           (*) 
 
To get the ERF, you divide by  p(r)   to see that  e^{rt}/p(r)  is 
a solution to  p(D) x = e^{rt} . 
 
This formula (*) is true even if  p(r) = 0 .  I will exploit that fact 
by thinking of  t  as a constant and  r  as a variable, and differentiate  
with respect to  r . There are two independent variables now.   D  is 
differentiation with respect to  t .  In 18.02 you learn that at least 
when applied to nice functions (eg  e^{rt}), mixed partials are equal: 
 
(partial/partial r)(partial/partial d) = (partial\partial d)(partial/partial r) 
 
So     (partial/partial r) D = D (partial/partial r)     and 
 
     (partial/partial r) p(D) e^{rt} = p(D) (partial/partial r) e^{rt} 
 
                                     = p(D) (t e^{rt})  
 
By (*), the LHS equals 



 
      (partial/partial r) (p(r) e^{rt}) = p'(r) e^{rt} + p(r) t e^{rt} 
 
so 
 
           p(D) (t e^{rt}) = p'(r) e^{rt} + p(r) t e^{rt} 
 
Now the hypothesis that  p(r) = 0   becomes a virtue! - the second term 
goes away. As long as  p'(r)  is not zero we can divide by it: 
 
 
Resonant Response Formula:   If  p(r) = 0  and  p'(r)  is not zero, then 
 
          x_p = B t e^{rt} / p'(r)   
 
is a solution to  p(D) x = B e^{rt} . 
 
 
Example: If  p(s) = s^2 - 4 ,  p'(s) = 2s , so a solution to   
x" - 4x = e^{-2t}  is given by 
 
          x_p = t e^{-2t} / 4  
 
 
When  r  is a root of  p(s)  we say that the system is "in resonance" 
with the input signal. Here's why: 
 
 
Example:  x" + 4x = cos(2t) 
 
          z" + 4z = e^{2it} 
 
p(s) = s^2 + 4 ,  p(2i) = 0 . p'(s) = 2s , p'(2i) = 4i .  
 
          z_p = t e^{2it} / 4i  
 
          x_p = Re z_p = (1/4) t sin(2t) . 
 
So it's like a swing - you push in synch with the natural frequency 
and the amplitude increases, linearly.  You're in resonance. 
Our solution in the first example doesn't increase in size - it decays 
to zero, but slower than the  e^{-2t}  decay that ERF would lead us to 
expect. 
 
 
Speaking of swings, with the economy the way it is, the CIA is about the 
only group hiring academics these days. One day a biologist, a physicist, 
and a mathematician were staking out an empty house. Two people went in, 
and a little while later three people came out. The biologist started  
talking about reproduction, the physicist about tunneling, and the  
mathematician said, "If one more person goes into that house, it will 
be empty again." 
 
 
[3] Polynomial signals are next. 
 
Theorem (Undetermined coefficients)  Suppose that 



 
      q(t) = b_k t^k + ... + b_1 t + b_0 . 
 
Then  p(D)x = q(t)  has exactly one solution which is polynomial of degree 
less than or equal to  k ,  provided that  p(0)  is not zero. 
  
 
Notice that if  p(s)  is the polynomial  
 
     a_n s^n + a_(n-1) s^{n-1} + ... + a_1 s + a_0   
 
then  p(0) = a_0. 
 
 
Proof by example: 
 
     3x" + 2x' + x = t^2 + 1   
 
The theorem applies since  3  is not  0 : there is exactly one solution of  
the form 
 
     x = at^2 + bt + c 
 
To find a , b , c ,  plug in: 
 
     1]  x   = at^2  +  bt      +  c 
     2]  x'  =         2at      +  b 
     3]  x"  =                    2a    
     _________________________ 
     t^2 + 1 = at^2 + (b+4a)t + (c+2b+6a) 
 
The coefficients must be equal.  a = 1 .  Then  b+4a = 0  implies  b = -4 . 
Finally  c+2b+6a = 1  reads  c = 1 - 2b - 6a = 1 - 2(-4) - 6 = 3 . 
 
     x_p = t^2 - 4t + 3 
 
 
If  a_0 = 0 , the theorem doesn't apply, but we can use "reduction of order":   
 
Eg      x" + x'  =  t 
 
Substitute  u = x'  so  u' + u = t 
 
      u  =  at + b 
      u' =       a 
     -------------- 
      t  =  at + (a+b) 
 
a = 1 ,  b = -1 ,  u_p = t - 1 . Now integrate:  x_p = t^2/2 - t . 
 
For the general solution, the roots of  p(s) = s(s+1) are  0 and -1, 
so  x_h = c_1 + c_2 e^{-t} . 
 
 
Q15.1. The differential equation  3x^{(4)} + 2x^{(3)} + x^{(2)} = t^2 + 1 
 
(1) has no polynomial solutions. 



(2) has exactly one polynomial solution. 
(3) has a polynomial solution of degree at most 3 . 
(4) has exactly one polynomial solution of the form  at^5 + bt^4 + ct^3 . 
(5) has only polynomial solutions. 
(6) None of the above 
(7) Several of the above 
(Blank) Don't know 
 
Ans:  First of all, if I plug  1  or  t  into the left hand side, I get 
zero. These are solutions to the associated homogeneous equation, so I 
can add them to any solution and get new solutions. So if there is one 
polynomial solution then there are many.  
 
To find one, set  u = x" , so the equation is  3u" + 2u' + u = t^2 + 1 . 
 
We solved this above, but in any case the Undetermined Coefficients Theorem 
shows that it has a solution  u = at^2 + bt + c .  Integrating twice to get 
x  gives a polynomial involving  t^4, t^3, t^2  (and, if you like,   
t  and  1  as well, by different choice of constant of integration).  
 
So I think the answer is (6).  
 
Incidentally using the calculation we did, you get  
 
     x_p = (1/12) t^4 - (2/3) t^3 + (3/2) t^2 . 
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