18.03 Class 17, March 12, 2010
Linearity and time invariance

[1] RLC

[2] Superposition 111

[3] Time invariance

[4] Review of solution methods

[1] We"ve spent a lot of time with mx"™ + bx" + cx = q(t) . There are many
other systems modeled by this equation. For example here is a series
RLC circuit:

current; the same everywhere

1 =
V = voltage increase across the power source
V_R = voltage drop across the resistor
V_C = voltage drop across the capacitor
Input signal: \

System response: |

KVWL: VR +V.C =V

Component behavior:

VR =R I V_C* = (/0O) 1
Differentiate KVL : V.R*" + V.C" =V~
so RI1®™ + (1/C) I = V*

In Lecture 3 we offered this as an example of a first order LTI system.

Now let"s add another component, an inductor.




The voltage drop across an inductor depends not on the current but rather on
the derivative of the current:

vVi=LI" so V.L"=LI"
KVL now says VL+VR+VC=YV
SO LI"+RI"+ ((/C) 1 =V" ™)
The system serves as an OPERATOR:

LD +RD+ (1/C) I d

takes the current 1 , as a function of time, and gives the derivative
of the impressed voltage. (I have to use a different symbol for the identity
operator here, so it doesn"t get confused with current. I chose "1d.")

[2] Suppose you want to solve u" - 4u = cosh(2t)
Remember, 1 can write the left hand side as p(D) u where p(s) =s™2 - 4 .
First you have to know what cosh(t) 1is :

cosh(xX)
sinh(x)

(ex+e™Mx} )/ 2
(ex-eMx} )/ 2

The right hand side is a linear combination of exponentials, each of
which we know very well how to deal with.

Superposition I1l1: p(D) (c1x1+c2x2)=cl1p® x1+c2plD x2
[Slide]
Therefore, If p(®) x 1 =09 1(t) and p(D) x 2 = g 2(t), then

X=c1lx1+c2x2 solves p(D) x = c_1 g 1(t) + c_2 g_2(v)

Proof of Super I111: [Slide]
p(D) x =anx™n) + ... +alx"+a0x
a 0] X =c¢cl1x1 +c2x2
all X" =c_ 1 x 1" + c 2 x 2"
az2l] X" =c 1x1" +c 2 x 2"

p(D) x =c 1 p® x1+c2pd x2

So we should solve separately: u 1" - 4u 1 = e™N2t} , u 2" - 4u 2 = enN{-2t}

Try to apply ERF: p(s) sn"2 -4, p(2)

= =0 and p(-2) =0 :
so we must use ERF/R : p*"(s) =2s, p"(2) =

4, p(-2) = -4,



ten{2t}/4 solves u_1" - 4u_1
ten{-2t}/(-4) solves u_ 2" - 4u 2

en{2t}

u_
u_ en{-2t}

1
2
so u=((t/4) (enf2t} - en{-2t} ) /7 2 = (t/4) sinh(2t) is a solution.
Super 111 contains the earlier episodes.

With g_2 = 0 , this gives us "Superposition 11,"

With g1 =0 and q 2 =0 , we get'" Superposition I."

The property Superposition 11l says that p(D) 1is a LINEAR OPERATOR.

[3] You may be worried that we always say that we are interested in
sinusoidal input, but then we always consider A cos(omega t) , with no
phase lag. Isn"t that kind of restrictive?

Ans: No. Here"s why.

First, if the right hand side is a sine, there is a special thing you can do:
Example: X" + 9x = sin(2t)

This is the IMAGINARY part of z" + 9z = e™{2t} : p(s) =s™2 + 9,

p(2i) =9 -4 , zp =eMN2it} / (9-4) , so
xp = Im ( er{2it}/(9-4)) = (1/(9-4) sin(2t)

This is worth remembering, by the way: if you drive a harmonic oscillator,
there is no phase lag:

X" + omega_n™2 x = cos(omega t) I X p cos(omega t) / ( omega_n”2 - omega™2 )

X" + omega n™2 x = sin(omega t) : x p = sin(omega t) / ( omega n™2 - omega™2 )

But there is a better and more general reason:

We are studying the response of a system which

is not changing: the coefficients are constant. So if | start the signal
a little bit later, all that happens is that the system response is
correspondingly delayed.

IT we shift the graph of a function x(t) to the right by

a units, we get the graph of the function x(t-a) .

TIME INVARIANCE: IT p(®) y(t) = q(t) , then p(D) y(t-a) = q(t-a)

[Slide]

To solve p(D) x = q(t-a) , first solve p(MD@) y = q(t) . Then x(t) = y(t-a).

It"s very important that the coefficients are *constant* for this to work.

Example: X" + x*" + 6x = cos( 2t - pi/3 )



Method: (1) Rewrite the right hand side as Tf(t-a):

cos( 2t - pi/3) = cos( 2(t - pi/6)) so T(t) = cos(2t) and a = pi/6 .
(2) Solve y" + y" + 6y = F(t) = cos(2t) ;

z" + z" + 6z = eN{2It} ,

p(s) = s +s+6, pRiI)=-4+2i+6=2+2i =2sqrt(2) er{i pi/a},

z p = eM2it} / 2(1+i) = (1/72sqrt(2)) e~ i pi/4}y enN{2it}
= (1/2sqgrt 2) e™i(2t - pi/d)} ,
y p = Re(z_p) = (1/2sgrt 2) cos(2t - pi/4b)

(3) Then a solution to the original equation is

(1/2sqgrt 2) cos(2(t - pi/6) - pi/4) .
(1/2sqrt 2) cos((2t - pi/3) - pi/4) .

x(t) = y(t-a) = y_p(t - pi/6)

Be careful here: the (t - pi/6) goes in place of t , so gets multiplied
by the circular frequency.

In any case: [Slide] The amplitude and the phase lag of the solution to
p(D) x = A cos(omega t - phi_0)

depend only on omega and A , and not on phi_O .

IT there is a system you are studying, it has a gain and a phase lag,
functions of the circular frequency of the input signal. These are the same
for any sinusoidal input with the given frequency. They don®t depend on
amplitude or phase of input.

[4] Brief summary of solution methods

We are looking at LTI operators. Solutions x h of p(D) x = 0 are linear
combinations of e™rt} where r 1is a root of the characteristic
polynomial: "modes.”™ If r is a double root you have to add te™{rt}

(and so on). ITf r = at+bi 1is a non-real root (and p(s) has real
coefficients) the r-conjugate is also a root, and these two conjugate

modes combine to give en{at} cos(bt) and en{at} sin(bt) .

IT all roots have negative real part, then all these solutions decay to
zero as t ---> infinity : they are transients.

To solve p(D) x = q(t) , find some solution x p ; then the general solution
is x p + x _h : all solutions converge as t ---> infinity.

q(t) = e™{rt} : ERF or ERF/R
q(t) = cos : complex replacement reduces to exponential input signal.

q(t)

exp X cos : ditto.



sinusoidal : use time invariance to shift to cosine.

q(t)

q(t) = polynomial : undetermined coefficients, preceded by reduction of
order 1T necessary

q(t) = (anything) x exponential : variation of parameters leads to a
new differential equation in which the exponential has
been eliminated from the right hand side.

q(t) = linear combination: Superposition 111
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