
 
18.03 Class 24, April 5, 2010 
 
Unit impulse and step responses 
 
1. Generalized derivative 
2. Rest initial conditions 
3. First order unit step/impulse response 
4. Second order unit step/impulse response 
 
 
[1] Generalized derivative 
 
The unit step and delta functions help deal with events happening on 
a time scale which is very short relative to our interest.  
 
u(t) can be thought of as a function which, except for  t  very near zero, 
is given by  u(t) = 0  for  t < 0  and  u(t) = 1  for  t > 0 . 
 
delta(t) can be thought of as a function which is zero except for  t  very 
near zero, and has area under its graph equal to  1 . 
 
u'(t) = delta(t) . 
 
A generalized function is by definition a sum  g(t) = g_r(t) + g_s(t) ,  
where its *regular part*  g_r(t)  is piecewise smooth, and its  
*singular part*  g_s(t)  is a linear combination of shifted delta functions. 
 
Any regular  f(t)  function has a  "generalized derivative"  f'(t)  which is 
a generalized function:  f'(t) = f'_r(t) + f'_s(t) .  The regular part  
is the ordinary derivative of  f(t) (except at the break points, where it  
is undefined).  The singular part is a sum of delta functions, one for each  
break in the graph: 
 
          (f(a+)-f(a-)) delta(t-a) 
 
There's no separate notation for the generalized derivative to distinguish 
it from the ordinary derivative, and we will just write  f'(t)  or  dot-x (t). 
 
For example, if   f(t) = t + 2 u(t) ,  
                 f'(t) = 1 + 2 delta(t)  
               f'_r(t) = 1 
               f'_s(t) = 2 delta(t) 
 
Conversely, if g(t)  is a generalized function then   
 
          f(t) = int_a^t g(t) dt 
 
makes sense: take the cumulative total of the regular part by integrating 
as usual, and add in whatever contributions the delta functions make.  
 
Then FTC is still true:  f(b) - f(a) = int_a^b f'(t) dt 
 
 
[2] Let's solve some differential equations with discontinuous input signals. 
In this part of the course we will make the following standing assumptions 
(which are covered by the general rubric "rest initial conditions": 



 
(1) the input signal is zero for  t < 0  
(2) the desired system response is zero for t < 0  
(3) the solution has as many derivatives as possible 
 
 
[3] First order  
 
Ex 1.  x' + kx = r u(t) .   
 
Interpretation: I add uranium to the reactor at a constant rate of   
r  kg/year, say, starting at  t = 0 . 
 
Look for a continuous solution. Thus  x(0) = 0 , and for  t > 0   
we must solve   
 
        x' + kx = r  . 
 
The general solution is  x(t) = (r/k) + ce^{-kt} .  To find  c , we use   
x(0) = 0 :     0 =  x(0) = (r/k) + c ,  c = -r/k ,   
 
      x(t) = (r/k) ( 1 - e^{-kt} )      t > 0 . 
  
With  r = 1 , this is the *unit step response,* sometimes written  v(t).  
To be more precise, we could write 
 
      v(t) = u(t) (1/k) ( 1 - e^{-kt} )  
 
 
Question 24.1. For the solution to  v' + kv = u(t) 
with rest initial conditions,  v(0-) = 0 .  What is  v'(0+) ? 
 
1.  v'(0+) = 0 
2.  v'(0+) = 1/k 
3.  v'(0+) = 1 
4.  v'(0+) = k 
5.  Don't know 
 
Ans: (3):   v(0) = 0 , so  v'(0+) = u(0+) = 1 . 
 
 
Ex 2. x' + kx = delta(t) .  
 
Interpretation: I insert one kilogram of uranium into the reactor at  t = 
0  
and leave it alone thereafter. The corresponding rate is given 
by the delta function.  The solution can't be continuous; 
x(0-) = 0  but  x(0+) = 1 .  Thereafter, though, the equation is  
 
      x' + kx = 0   
 
--- homogeneous, with solution  e^{-kt} , t > 0 . 
 
This is the *unit impulse response*, which we will write  w(t) .   
In some sense it is the simplest nontrivial solution;  
you just give the system a unit kick at  t = 0 , stand back, and watch  
the result. Since we began with rest initial conditions, the full solution 



is 
 
       w(t) = u(t) e^{-kt}  
 
 
Question 24.2. For solution  w(t)  to  x' + kx = delta(t)  with rest initial 
conditions, what is  w'(0+) ? 
 
1.  w'(0+) = 0 
2.  w'(0+) = - 1/k 
3.  w'(0+) = - 1 
4.  w'(0+) = - k 
5.  Don't know 
 
Ans: (4) :  w(0+) = 1 , while  delta(0+) = 0 , so  w'(0+) = -k .  
 
 
[4] Second order 
 
Ex 3. mx" + kx = u(t) 
 
Interpretation: at  t = 0  a steady force starts to act on the mass. 
The mass does not change position abruptly, nor does it change velocity 
instantaneously. Therefore we should expect a solution which is continuous 
with continuous derivative; only the acceleration experiences a discontinuity. 
 
There is a constant solution:  x = 1/k . So the general solution is 
 
     x(t) = (1/k) + a cos(omega_n t) + b sin(omega_n t) .  
 
where  omega_n = sqrt(k/m) 
 
     0 = x(0) = (1/k) + a   
 
     0 = x'(0 ) = - a omega_n sin(omega_n t) + b omega_n cos(omega_n t) 
 
so  a = - 1/k , b = 0 ,  
 
     v(t) = u(t) (1/k) (1 - cos(omega_n t) 
 
 
Ex 4.  mx" + kx = delta(t)  
 
Interpretation: There is a sudden very brief very intense force, 
rather like getting hit on the head by a hammer. The effect is to increase 
the momentum instantaneously, without changing the position.  
 
Since  x(0) = 0  and  x  is continuous,  x(t)  small for small  t , 
so for small  t  we have approximately   mv' = delta(t) ,  or   
v' = (1/m) delta(t) , so  v  increases abruptly by  (1/m)  at  t = 0 . 
The momentum increases by  1 .  This is a "unit *impulse*." 
 
So for  t > 0  the equation is equivalent to 
 
     mx" + kx = 0  ,  x(0+) = 0 , x'(0+) = 1/m  
 
--- homogeneous. General solution is sinusoidal with circular frequency 



omega_n = sqrt{k/m} .  x(0+) = 0 implies sine: 
  
     x = c sin(omega_n t) ,   x' = c omega_n cos(omega_n t) 
 
so  1/m = c omega_n   or  c = 1/(m omega_n) 
 
and the unit impulse response is  
 
     w = u(t) (1/(m omega_n) sin(omega_n t)  
 
 
Question 24.3. For solution  w(t)  to  mx" + kx = delta(t)   
with rest initial conditions, what is  w'(0+) ? 
 
1.  w'(0+) = 0 
2.  w'(0+) = omega_n 
3.  w'(0+) = k 
4.  w'(0+) = k/m 
5.  w'(0+) = 1/m 
6.  Don't know 
 
Ans: (5):  As we saw. 
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