18.03 Class 36, May 5, 2010

The matrix exponential: initial value problems.

- 1. Definition of e^{At}
- 2. Computation of e^{At}
- 3. Uncoupled example
- 4. Defective example
- 5. Exponential law
- [1] Recall from day one:
- (a) x' = rx with initial condition x(0) = 1 has solution $x = e^{rt}$.

x' = rx with any initial condition has solution $x = e^{rt} x(0)$.

Later, we decided to *define* e^{it} as the solution to

(b) x' = ix with initial condition x(0) = 1.

Following Euler, a solution is given by $\cos t + i \sin t$, so we found that

$$e^{it} = cos(t) + i sin(t)$$

(c) Now we are studying u' = A u. Let's try to *define*

The solution to u' = Au with initial condition u(0) is $u = e^{At}u(0)$. (**)

Note that the initial value u(0) is a vector, and u(t) is a vector valued function. So the expression e^{At} must denote a matrix, or rather a matrix valued function.

What could e^{At} be? For a start, what is its first column? Recall that the first column of any matrix B is the product B[1;0], and $[b_1 \ b_2][1;0] = b_1$, so combining this with (**) we see:

The first column of e^{At} is the solution to u' = Au with u(0) = [1;0].

Similarly,

The second column of e^{At} is the solution to u' = Au with u(0) = [0;1].

This is the DEFINITION of e^{At} . It makes (**) true for all u(0), because e^{At} u(0) is a solution (being a linear combination of the columns of e^{At} , which are solutions), and when t=0 we get

$$e^{A0} u(0) = I u(0) = u(0)$$
.

[2] Computation of e^{At}

We need a method for computing it, though. To explore this we'll use the

Example: A = [11; 02].

This is upper triangular, so its eigenvalues are given by the diagonal entries: lambda = 1, lambda = 2. The (tr,det) pair lies in the upper right quadrant, below the critical parabola; the phase portrait is an unstable node.

Find eigenvectors:

$$lambda_1 = 1 : A - I : [01;01] [?;?] = [0;0] : v_1 = [1;0]$$

 $lambda_2 = 2 : A - 2I : [-11;00] [?;?] = [0;0] : v_2 = [1;1]$

Two independent solutions are given by

$$u_1 = [e^t; 0], u_2 = [e^{2t}; e^{2t}]$$

and the general solution is

$$u = c_1 [e^t ; 0] + c_2 [e^{2t} ; e^{2t}]$$

We could go ahead and solve for c_1 and c_2 to get solutions with the desired initial conditions. What follows is a clever way to do that.

There is a compact way to write this linear combination: it is

$$u = [e^t, e^{2t}; 0, e^{2t}] [c_1; c_2].$$
 (***)

This matrix is a "fundamental matrix" for the system: its columns are independent solutions. Such a matrix will be denoted by Phi(t); so here

$$Phi(t) = [e^t, e^{2t}; 0, e^{2t}]$$

Phi(t) behaves very much like we want e^{At} to behave; its columns are solutions, even independent ones, and the general solution is given by

The matrix exponential e^{At} is a fundamental matrix: it is the fundamental matrix Phi(t) such that Phi(0) = I.

Our Phi(t) does not evaluate this way. To fix this, I claim we should form

Phi(t) Phi(t)
$$^{-1}$$

Explanation: If B is a square matrix, you can ask whether it has an *inverse* matrix, a matrix B^{-1} such that

$$B B\{-1\} = I$$
 and $B^{\{-1\}} B = I$

(either implies both). The answer, as for numbers, is not always. It turns out that there is an inverse exactly when det(B) is not zero.

In the 2x2 case, B = [ab;cd] and

$$[ab;cd]^{-1} = (1/det(A))[d-b;-ca].$$

We can check this:

```
[ a b ; c d ] [ d -b ; -c a ] = [ ad-bc 0 ; 0 ad-bc ] = (det B) I
```

Now let's see: each column $Phi(t) Phi(0)^{-1}$ is a linear combination of the columns of Phi(t), so it's a solution. What remains is to check the normalization; but $Phi(0) Phi(0)^{-1} = I$.

Conclusion:

$$e^{At} = Phi(t) Phi(0)^{-1}$$

where Phi(t) is ANY fundamental matrix for A.2A

In our example, Phi(0) = [1 1 ; 0 1], $Phi(0)^{-1} = [1 -1 ; 0 1]$, and so

$$e^{At} = [e^t e^{2t}; 0 e^{2t}] [1-1; 01]$$

= [e^t, e^{2t} - e^t; 0, e^{2t}].

[3] Uncoupled example: Suppose A = [a 0 ; 0 d]. The eigenvalues are $lambda_1 = a$ and $lambda_2 = d$

I can see the eigenvectors: $v_1 = [1; 0]$, $v_2 = [0; 1]$.

Basic solutions are $e^{\{ambda_1 t\}} [1; 0]$ $e^{\{ambda_2 t\}} [0; 1]$

so
$$Phi(t) = [e^{\lambda_1 t} 0 ; 0 e^{\lambda_2 t}]$$

and this is already normalized: so it is the matrix exponential.

[4] Defective example.

Sometimes the matrix exponential can be a bit unexpected. For example:

$$A = [0 1 ; 0 0]$$

Then tr A = 0 and det A = 0 , so the only eigenvalue is 0 , with multiplicity 2 . This is not a diagonal matrix, so it is defective, and we could find solutions by the standard method. However, it is also a companion matrix, for the second order equation x'' = 0. Solutions of this are easy! $x_1 = 1$, $x_2 = t$. So basic solutions to

$$u' = A u$$

are
$$u_1 = [x_1; x_1'] = [1; 0]$$

 $u_2 = [x_2; x_2'] = [t; 1]$

$$Phi(t) = [1t; 01]$$

This satisfies Phi(0) = I , so

```
[5] We can take t to be a specific value, of course: eg t = 1:
    e^[ 0 1 ; 0 0 ] = [ 1 1 ; 0 1 ]
and this lets us define e^A for any square matrix A .
Then e^0 = I , as you might expect, but watch out:
    e^A e^B = e^{A+B} *provided that* AB = BA
```

 $e^{At} = [1t;01]$

So for example $(e^A)^n = e^{nA}$

MIT OpenCourseWare http://ocw.mit.edu

18.03 Differential Equations Spring 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.