
18.03SC Final Exam
 

1. This problem concerns the differential equation
 

dy 2 = x2 − y (∗)
dx 

Let y = f (x) be the solution with f (−2) = 0. 

(a) Sketch the isoclines for slopes −2, 0, and 2, and sketch the direction field along them. 

(c) On the same diagram, sketch the graph of the solution f (x). What is its slope at x = −2? 

(d) Estimate f (100). 

(e) Suppose that the function f (x) reaches a maximum at x = a. What is f (a)? 

(f) Use two steps of Euler’s method to estimate f (−1). 
. 2 + x32. In (a)–(c) we consider the autonomous equation x = 2x − 3x . 

(a) Sketch the phase line of this equation. 

(b) Sketch the graphs of some solutions. Be sure to include at least one solution with values
 
in each interval above, below, and between the critical points.
 

(c) Some solutions have points of inflection. What are the possible values of x(a) if a non-

constant solution x(t) has a point of inflection at t = a?
 

(d) A radioactive isotope of the element Cantabrigium, Ct, decays with half life of two
 
years. The MIT reactor runs on Cantabrigium.
 
At t = 0 there is no Ct in it, but starting at t = 0, Ct is added in such a way that the
 
cumulative total amount inserted by time t years is t kg.
 

Write down a differential equation for the number of moles of Ct in the reactor as a function
 
of time. What is the initial condition?
 

dy 
(e) Solve the initial value problem x + 3y = x2, y(1) = 1.

dx � 
ie2it � 

3. (a) Find non-negative real numbers A, ω, and φ such that Re = A cos(ωt − φ).
1 + i 

(b) Sketch the trajectory of e(1−πi)t . 

(c) Express the cube roots of 8i in the form a + bi (with a and b real). 
.. .

4. (a)–(c) Find one solution to x + 2x + 2x = q(t) for 

(a) q(t) = t2 + 1. 

(b) q(t) = e−2t + 1. 

(c) q(t) = sin t. What is the amplitude of the sinusoidal solution? 
.. .

In (d) and (e), suppose that that t3 is a solution to x + 2x + 2x = q(t). 

(d) What is q(t)? 
.. .

(e) What is the general solution to x + 2x + 2x = q(t)? 

5. (a)–(b) concern the function f (t) = sq(t + π 
2 ). 

(a) Graph f (t). 
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(b) What is its Fourier series? (Simplify the trig functions.) 
..

(c) Find a solution to x + x = sq(t). 

6. (a)–(d) In a recent game of Capture the Flag, a certain student was observed to move 
according to the following graph, in which the hashmarks are at unit spacing. 
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(a) Graph the generalized derivative v(t). 

(b) Write a formula for v(t) in terms of the unit step and (if necessary) the delta function. 
.

(c) Still with the same function as in (a): Graph the generalized derivative v(t). 
.

(d) Write a formula for the acceleration v(t) in terms of the unit step and (if necessary) the 
delta function. 

(e) Suppose that the unit impulse response of a certain operator p(D) is w(t). Let q(t) = 0 
for t < 0 and t > 1, and q(t) = 1 for 0 < t < 1. Please find functions a(t), b(t) so that the 
solution x(t) to p(D)x = q(t), with rest initial conditions, is given by � b(t) 

x(t) = w(τ) dτ 
a(t) 

7. This problem concerns the operator p(D) = 2D2 + 8D + 16I. 

(a) What is the transfer function of the operator p(D)? 

(b) What is the unit impulse response of this operator? 

(c) What is the Laplace transform of the solution to p(D)x = sin(t) with rest initial condi­
tions? 

2 12
8. In (a) and (b), A = .

3 2 

(a) What are the eigenvalues of A? 

(b) For each eigenvalue, find a nonzero eigenvector. 

1 −1
(c) Suppose that the matrix B has eigenvalues 1 and 2, with eigenvectors and

1 1 
respectively. Calculate eBt . 

2
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(d) What is the solution to 
. 
u = Bu with u(0) = 

2 
1 

? � � 
1

9. (a) Suppose again that the matrix B has eigenvalues 1 and 2, with eigenvectors 

−1
and respectively. Sketch the phase portrait on the graph below. 

1 

a −2 .
(b) Let A = , and consider the homogeneous linear system u = Au. For each of 

2 1 
the following conditions, determine all values of a (if any) which are such that the system 
satisfies the condition. 

(i) Saddle 
(ii) Star 
(iii) Stable node 
(iv) Stable spiral. What is the direction of rotation? 
(v) Unstable spiral. 
(vi) Unstable defective node � . 2 − y2x = x
10. Parts (a)–(c) deal with the nonlinear autonomous system . . 

y = x2 + y2 − 8 

(a) Find the equilibria of this system. 

(b) There is one equilibrium in the south-west quadrant. Find the Jacobian at this equilib­
rium. 

(c) The equilibrium you found in (b) is a stable spiral. For large t, the solutions which con­
verge to this equilibrium have x-coordinate which are well-approximated by the function 
Aeat cos(ωt − φ) for some constants A, φ, a, and ω. Some of these constants depend upon 
the particular solution, and some are common to all solutions of this type. Find the values 
of the ones which are common to all such solutions. 

.
(d) Finally, return to the autonomous equation x = 2x − 3x2 + x3 that you studied in 
problem 2. Write down a formula approximating the solutions converging to the stable 
equilibrium when t is large. 

Operator Formulas 

• Exponential Response Formula: xp = Aert/p(r) solves p(D)x = Aert provided p(r) �= 0. 

• Resonant Response Formula: If p(r) = 0 then xp = Atert/p�(r) solves p(D)x = Aert 

provided p�(r) �= 0. 

Defective matrix formula 

If A is a defective 2 × 2 matrix with eigenvalue λ1 and nonzero eigenvector v1, then you .
can solve for w in (A − λ1 I)w = v1 and u = eλ1t(tv1 + w) is a solution to u = Au. 

Properties of the Laplace transform 

3
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� ∞ 
0. Definition: L[ f (t)] = F(s) = f (t)e−st dt for Re s >> 0. 

0− 

1. Linearity: L[a f (t) + bg(t)] = aF(s) + bG(s). 

2. Inverse transform: F(s) essentially determines f (t). 

3. s-shift rule: L[eat f (t)] = F(s − a). 

f (t − a) if t > a
4. t-shift rule: L[ fa(t)] = e−as F(s), fa(t) = .

0 if t < a 

5. s-derivative rule: L[t f (t)] = −F�(s). 

6. t-derivative rule: L[ f �(t)] = sF(s) [generalized derivative]
 
L[ f �(t)] = sF(s) − f (0+) [ f (t) continuous for t > 0]
r � t 

7. Convolution rule: L[ f (t) ∗ g(t)] = F(s)G(s), f (t) ∗ g(t) = f (τ)g(t − τ)d τ. 
0 

1
8. Weight function: L[w(t)] = W(s) = , w(t) the unit impulse response. 

p(s) 

Formulas for the Laplace transform 

1 1 n! L[1] = L[eat] = L[tn] = 
sn+1s s − a 

s ω L[cos(ωt)] = L[sin(ωt)] = 
s2 + ω2 s2 + ω2 

e−as 

L[ua(t)] = L[δa(t)] = e−as 

s 
where u(t) is the unit step function u(t) = 1 for t > 0, u(t) = 0 for t < 0. 

Fourier series 

a0f (t) = + a1 cos(t) + a2 cos(2t) + · · · + b1 sin(t) + b2 sin(2t) + · · · 
2 � π � π1 1 

am = f (t) cos(mt) dt, bm = f (t) sin(mt) dt 
π −π π −π
 � π � π
 

cos(mt) cos(nt) dt = sin(mt) sin(nt) dt = 0 for m �= n 
−π −π
 � π � π
 

cos2(mt) dt = sin2(mt) dt = π for m > 0 
−π −π 

If sq(t) is the odd function of period 2π which has value 1 between 0 and π, then 

4 sin(3t) sin(5t)
sq(t) = sin(t) + + + · · · 

π 3 5 
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