18.03SC Final Exam Solutions

1. (a) Theisocline for slope 0 is the pair of straight lines y = +x. The direction field along

2.

()

(e)

these lines is flat.

The isocline for slope 2 is the hyperbola on the left and right of the straight lines.
The direction field along this hyperbola has slope 2.

The isocline for slope -2 is the hyperbola above and below the straight lines. The
direction field along this hyperbola has slope -2.

The sketch should have the following features:
The curve passes through (-2, 0). The slope at (-2, 0) is (—2)? — (0)? = 4.
Going backward from (-2, 0), the curve goes down (dy/dx > 0), crosses the left

branch of the hyperbola x> — 4> = 2 with slope 2, and gets closer and closer to the
line y = x but never touches it.

Going forward from (-2, 0), the curve first goes up, crosses the left branch of the

hyperbola x?> — y? = 2 with slope 2, and becomes flat when it intersects with y = —x.
Then the curve goes down and stays between y = —x and the upper branch of
the hyperbola x> — y?> = —2, until it becomes flat as it crosses y = x. Finally, the

curve goes up again and stays between y = x and the right branch of the hyperbola
x? — y? = 2 until it leaves the box.

£(100) ~ 100.

(d) It follows from the picture in (b) that f(x) reaches a local maximum on the line

y = —x. Therefore f(a) = —a.

Since we know f(—2) = 0, to estimate f(—1) with two steps, the step size is 0.5. At
each step, we calculate

Xp = Xy_1+0.5, Yn =Yn1+05(x5_1 —ya_1)

The calculation is displayed in the following table.

n| x| yn |05(x2—1y2)
0] 2 | 0 2
1115 2 -0.875

20 -1 | 1125

The estimate of f(—1) is y» = 1.125.

(a) The equationis x = x(x —1)(x — 2). The phase line has three equilibria x = 0, 1, 2.

For x < 0, the arrow points down.

For 0 < x < 1, the arrow points up.
For1 < x < 2, the arrow points down.
For x > 2, the arrow points up.

(b) The horizontal axis is ¢ and the vertical axis is x. There are three constant solu-

tions x(t) = 0, 1, 2. Their graphs are horizontal. Below x = 0, all solutions are
decreasisng and they tend to —co.
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(d)

(e)

Between x = 0 and x = 1, all solutions are increasing and they approach x = 1.
Between x = 1 and x = 2, all solutions are decreasing and they approach x = 1.
Above x = 2, all solutions are increasing and they tend to +-co.

A point of inflection (a, x(a)) is where X changes sign. In particular, X(a) must be zero.
Differentiating the given equation with respect to t, we have

X = 2% — 6xx + 3x%x = x(2 — 6x + 3x2).
If x(t) is not a constant solution, x(a) # 0 so that x(a) must satisfy

2—6x(a)+3x(a)>=0 < x(a)=1+ \1@

Let x(t) be the number of kilograms of Ct in the reactor at time ¢t. The rate of
loading is 1 kg per year. Hence x(t) satisfies x = —kx + 1, where k is the decay rate
of Ct. Since the half life of Ct is 2 years, e~%2 =1/2, so that k = In(2) /2. Therefore

we have
p=-12 1
— 5 )

The initial condition is x(0) = 0.
The differential equation is linear. Since we have
R
yry=%x

an integrating factor is given by

exp (/ % dx) =exp(3lnx) = x°.
Multiply the above equation by x3 and integrate:

1
(Py) =3y +3%y =2t = Py= z X+

Since y(1) = 1, we have c = 4/5 and

_12, 4 3
y—5x +5x .

Express all compex numbers in polar form:
2t it/ 2 2t
ie? e/ 22 iei(2t+n/2—7r/4) _ Lei(Zt—nM)

1+i \/§ein/4: V2 V2

The real part is _
Re ey _ 1 cos <2t + E)
1+i) V2 4)°




The trajectory is an outgoing, clockwise spiral that passes through 1.

The polar form of 8 is 8¢™/2. Tts three cubic roots are

26'7/6 = 2cos%+2isin%:\/§+i,
- 5 5
264 (T/6+27/3) = 9 cog g + 2isin % = V341,
26i(7r/6+47r/3) — 2€3i7r/2 — _22

Let x,(t) = at? + bt + c. Plug it into the left hand side of the equation

i4+2t+2c = (2a)+2(2at +b) + 2(at® + bt + ¢)
2at* + (4a + 2b)t + (2a + 2b + 2¢)

and compare coefficients

2a =1, 4da 4 2b =0, 2a + 2b+ 2¢ = 1.

1
The solution is a = 1/2, b = —1, ¢ = 1. Therefore z,(t) = 3 t2—t+1.

The characteristic polynomial is p(s) = s2 + 2s + 2. Using the ERF and linearity,

Consider the complex equation
F+25+22=e".
For any solution z, its imaginary part x, = Im z, satisfies the real equation
T+ 2z + 2z = sint.
The ERF provides a particular solution of the complex equation

ezt ezt ezt 1

w0 = T n Ver V5 ©

where ¢ is the polar angle of 1 + 2i. Take the imaginary part of z,

i(t—9)

xp(t) =Imzy(t) = = sin(t — ¢)

V5
This is a sinusoidal solution of the real equation. Its amplitude is 1/ V5.
If 2(t) = t3 is a solution, then q(t) = & + 24 + 2x = 6t + 6% + t3.

The general solution is z(t) = t3 + x5,(t), where z,(t) is a solution of the associated
homogeneous equation. Since the characteristic polynomial s 4 2s 4+ 2 has roots —1 4 i,

z(t) =13 + xp(t) = t3 + cre P cost + cpe Usint.



5.

(a)

(b)

(b)

See the formula sheet for the definition of sq(t). The graph of f(t) is a square wave of
period 2. It has a horizontal line segment of height 1 in the range —7/2 < ¢t < 7/2 and
a horizontal line segment of height —1 in the range 7/2 <t < 37 /2.

Replace t by t + 7/2 in the definition of sq(t)

F(t)=s (t+f> _ 2 (t+ﬁ)+1s' 3¢+ 7Y & Lan (56427 &
=sq 5 = = in 5 3 in 5 3 in 5
4 1 1
= —|(cost— =cos3t+ —cosbt+...
T 3 5

First consider the complex equation

54z =™ for a positive integer n.
The characteristic polynomial is p(s) = s2 + 1. One of the ERFs provides a particular

solution of the complex equation

eint eint

»l) = ey =i 7l
te’it teint

Zp(t) = = , n=1

p) 2

The imaginary parts of these functions

int : t
up(t) = Im< c ): smn27 n#1

1—n? 1—n

te' 1
up(t) = Im<;>:—§tcost, n=1

satisfy the imaginary part of the above complex equation, namely
i + u = sinnt.

By linearity, a solution of # + x = sq(t) is given by

4 1 1 sindt 1 sindt
l'p(t):; <—§tcost—|—§- Yy —|—g- T2 —|—)
For t < 0, the graph is flat on t-axis.
For 0 < t < 1, the graph is flat at 1 unit above t-axis.
For 1 <t < 3, the graph is flat at 1 unit below t-axis.
For 3 <t < 4, the graph is flat at 1 unit above t-axis.
For t > 4, the graph is flat on t-axis.
o(t) = [u(t) = u(t — 1)) — [u(t — 1) — ult — 3)] + [u(t — 3) — u(t — 4)
= wu(t) —2u(t—1)+2u(t —3) —u(t —4)



(c)

(d)
(e)

The graph coincides with t-axis for all ¢, except for two upward spikes at ¢ = 0,3 and two
downward spikes at t = 1,4.

0(t) = 8(t) — 20(t — 1) + 28(t — 3) — 5(t — 4)

By the fundamental solution theorem (a.k.a. Green’s formula),

¢ b(t)
x(t):(q*w)(t):/o q(t—T)w(T)dT:/(t) w(r) dr.

Now g(t —7) = lonly for 0 < t—7 < 1l,ort—1 < 7 < t, and it is zero elsewhere.
Therefore the upper limit b(t) equals t. The lower limit a(¢) ist —1if ¢t —1 > 0, or 0 if
t —1 < 0. In other words, a(t) = (t — 1)u(t — 1).

1 1
p(s)  2s2+8s+16°

The transfer function is W(s) =

The unit impulse response w(t) is the inverse Laplace transform of W (s). In other words,
1 1
L(w(t)) = =
(w(®)) 952 + 85+ 16 2[(s +2)% + 4]
1 1
2t :
) = ——— = 2t
= L(e"w(t)) ) 1 L(sin 2t)

Therefore e*!w(t) = i sin 2t, and w(t) = i e~ sin 2t.
Take the Laplace transform of

p(D)x = 2%(t) + 8x(t) + 16x(t) = sint
with the initial conditions x(04) = 1, ©(04+) = 2. This yields

1
s2+1

252X (s) — s — 2] + 8[sX(s) — 1] + 16X (s) =

1 1
= X(s)= 2 12
() 252 +8s+ 16 (52—i-1jL ot )

The characteristic polynomial of A is

2—-X 12

det(A—/\I):det[ 3 9\

]:(2—)\)2—36:(/\—8)0\4-4)-

Therefore the eigenvalues are A = 8, —4.

For A =8, solve (A —8I)v =0. Since A — 8] = [ _36 i% ],asolutionisv: [ ? ]

6 12

3 6

For A = —4, solve (A +4I)v = 0. Since A + 41 = [ 1

2
},asolution isv= [ ]



10.

The following is a fundamental matrix for 1 = Bu

t 2t

=[G b |

o
—
(a=)
S~—
Il
| — |
—
—
—_
T
—
(e}
SN—
L
|
NN

1 1

-1 1
_ el —e2t 17 1 1 1[ et +e?t et —e2t
etB:F(t)F(O) 1=[€t 2t ]'5[_1 1]:§[et—e2t et—i—e%]

The general solution of 1 = Bu is

wtr=e | o e | | =ro | 0]

The given initial condition implies
2 o C1
HERL
c1 B a2 _1p 11 21 | 3/2
= o] = o [E]=s A -]

3el + et }

1
Therefore the solution of the initial value problem is u(t) = 3 { et _ o2t

The phase portrait has the following features:

All trajectories start at (0,0) and run off to infinity.
e There are straight line trajectories along the lines y = £x.
e All other trajectories are tangent to y = x at (0,0).
e No two trajectories cross each other.
TrA=a+1, detA=a+4, A= (TrA)?—4(detA)=(a—5)(a+3)
(i) detA<0 & a<-—4
ii) not for any a
i) A>0,TrA<OanddetA>0 & —4<a<-3
iv) A<O0and TrA<0 <« —3<a<-—1; counterclockwise
v) A<OandTrA>0 <& -—-1<a<b
(vij A=0andTrA>0 < a=5

T=z°—y =0, y=ax’4+y>—8=0.

This implies (22,52) = (4,4), so that (z,y) = (2,2),(2,-2),(-2,2), (-2, —2).
2r —2y

The Jacobian is J(x,y) = [ 2w 2

} In particular, J(—2,—2) = [ :j _44 ]

6



(c)

The linearization of the nonlinear system at (—2, —2) is the linear system u = J(—2, —2)u.
A computation shows that the eigenvalues of J(—2, —2) are —4 4-44. The first component
of u(t) is of the form

cre” ¥ cos 4t + coe M sindt = Ae Y cos(4t — ¢).

This means x(t) ~ —2 + Ae~* cos(4t — ¢) near (-2, —2).
Let f(x) = 2o — 322 + 2°. The phase line in problem 2(a) shows that i = f(z) has a
stable equilibrium at x = 1.

The linearization of the nonlinear equation at = 1 is the linear equation @ = f'(1)u =
—u. Its solutions are u(t) = Ae~'. This means z(t) ~ 1+ Ae~! near x = 1.
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