18.06SC Final Exam

1 (4+7=11 pts.) Suppose A is 3 by 4, and Ax = 0 has exactly 2 special solutions:

$$x_1 = \begin{bmatrix} 1 \\ 1 \\ 1 \\ 0 \end{bmatrix} \quad \text{and} \quad x_2 = \begin{bmatrix} -2 \\ -1 \\ 0 \\ 1 \end{bmatrix}$$

- (a) Remembering that A is 3 by 4, find its row reduced echelon form R.
- (b) Find the dimensions of all four fundamental subspaces C(A), N(A), $C(A^{\rm T})$, $N(A^{\rm T})$.

You have enough information to find bases for one or more of these subspaces—find those bases.

2 (6+3+2=11 pts.) (a) Find the inverse of a 3 by 3 upper triangular matrix U, with nonzero entries a, b, c, d, e, f. You could use cofactors and the formula for the inverse. Or possibly Gauss-Jordan elimination.

Find the inverse of
$$U = \begin{bmatrix} a & b & c \\ 0 & d & e \\ 0 & 0 & f \end{bmatrix}$$
.

- (b) Suppose the columns of U are eigenvectors of a matrix A. Show that A is also upper triangular.
- (c) Explain why this U cannot be the same matrix as the first factor in the Singular Value Decomposition $A = U\Sigma V^{\mathrm{T}}$.

3 (3+3+5=11 pts.) (a) A and B are any matrices with the same number of rows. What can you say (and explain why it is true) about the comparison of

 $\operatorname{rank} \, \operatorname{of} \, A \qquad \qquad \operatorname{rank} \, \operatorname{of} \, \operatorname{the} \, \operatorname{block} \, \operatorname{matrix} \, \left[\begin{array}{cc} A & B \end{array} \right]$

- (b) Suppose $B=A^2$. How do those ranks compare? Explain your reasoning.
- (c) If A is m by n of rank r, what are the dimensions of these nullspaces?

Nullspace of A

Nullspace of $\begin{bmatrix} A & A \end{bmatrix}$

- 4 (3+4+5=12 pts.) Suppose A is a 5 by 3 matrix and Ax is never zero (except when x is the zero vector).
 - (a) What can you say about the columns of A?
 - (b) Show that $A^{T}Ax$ is also never zero (except when x=0) by explaining this key step:
 - If $A^{T}Ax = 0$ then obviously $x^{T}A^{T}Ax = 0$ and then (WHY?) Ax = 0.
 - (c) We now know that $A^{T}A$ is invertible. Explain why $B = (A^{T}A)^{-1}A^{T}$ is a one-sided inverse of A (which side of A?). B is NOT a 2-sided inverse of A (explain why not).

5 (5+5=10 pts.) If A is 3 by 3 symmetric positive definite, then $Aq_i = \lambda_i q_i$ with positive eigenvalues and orthonormal eigenvectors q_i .

Suppose $x = c_1q_1 + c_2q_2 + c_3q_3$.

- (a) Compute x^Tx and also x^TAx in terms of the c's and λ 's.
- (b) Looking at the ratio of $x^{T}Ax$ in part (a) divided by $x^{T}x$ in part (a), what c's would make that ratio as large as possible? You can assume $\lambda_{1} < \lambda_{2} < \ldots < \lambda_{n}$. Conclusion: the ratio $x^{T}Ax/x^{T}x$ is a maximum when x is _____.

- 6 (4+4+4=12 pts.) (a) Find a linear combination w of the linearly independent $\operatorname{vec}_{\Gamma}$ tors v and u that is perpendicular to u.
 - (b) For the 2-column matrix $A=\begin{bmatrix}u&v\end{bmatrix}$, find Q (orthonormal columns) and R (2 by 2 upper triangular) so that $A=QR_{\mathbf{T}}$
 - (c) In terms of Q only, using A = QR, find the projection matrix P onto the plane spanned by u and v.

7 (4+3+4=11 pts.) (a) Find the eigenvalues of

$$C = \begin{bmatrix} 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \quad \text{and} \quad C^2 = \begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix}.$$

- (b) Those are both permutation matrices. What are their inverses C^{-1} and $(C^2)^{-1}$?
- (c) Find the determinants of C and C + I and C + 2I.

8 (4+3+4=11 pts.) Suppose a rectangular matrix A has independent columns.

- (a) How do you find the best least squares solution \widehat{x} to Ax = b? By taking those steps, give me a formula (letters not numbers) for \widehat{x} and also for $p = A\widehat{x}$.
- (b) The projection p is in which fundamental subspace associated with A? The error vector e = b - p is in which fundamental subspace?
- (c) Find by any method the projection matrix P onto the column space of A:

$$A = \begin{bmatrix} 1 & 0 \\ 3 & 0 \\ 0 & -1 \\ 0 & -3 \end{bmatrix}.$$

9 (3+4+4=11 pts.) This question is about the matrices with 3's on the main diagonal, 2's on the diagonal above, 1's on the diagonal below.

$$A_{1} = \begin{bmatrix} 3 \end{bmatrix} \quad A_{2} = \begin{bmatrix} 3 & 2 \\ 1 & 3 \end{bmatrix} \quad A_{3} = \begin{bmatrix} 3 & 2 & 0 \\ 1 & 3 & 2 \\ 0 & 1 & 3 \end{bmatrix} \quad A_{n} = \begin{bmatrix} 3 & 2 & 0 & 0 \\ 1 & 3 & 2 & 0 \\ 0 & 1 & 3 & \cdot \\ 0 & 0 & \cdot & \cdot \end{bmatrix}$$

- (a) What are the determinants of A_2 and A_3 ?
- (b) The determinant of A_n is D_n . Use cofactors of row 1 and column 1 to find the numbers a and b in the recursive formula for D_n :

$$(*) D_n = a D_{n-1} + b D_{n-2}.$$

(c) This equation (*) is the same as

$$\begin{bmatrix} D_n \\ D_{n-1} \end{bmatrix} = \begin{bmatrix} a & b \\ 1 & 0 \end{bmatrix} \begin{bmatrix} D_{n-1} \\ D_{n-2} \end{bmatrix}.$$

From the eigenvalues of that matrix, how fast do the determinants D_n grow? (If you didn't find a and b, say how you would answer part (c) for any a and b) For 1 point, find D_5 .

MIT OpenCourseWare http://ocw.mit.edu

18.06SC Linear Algebra Fall 2011

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.