SOLUTION SET I FOR 18.075-FALL 2004

10. Functions of a Complex Variable

10.1. Introduction. The Complex Variable. .

- **3.** Establish the following results:
 - (a) $Re(z_1 + z_2) = Re(z_1) + Re(z_2)$, but $Re(z_1 z_2) \neq Re(z_1)Re(z_2)$ in general;
 - (b) $\text{Im}(z_1 + z_2) = \text{Im}(z_1) + \text{Im}(z_2)$, but $Im(z_1 z_2) \neq \text{Im}(z_1)\text{Im}(z_2)$ in general;
 - (c) $|z_1z_2| = |z_1||z_2|$, but $|z_1 + z_2| \neq |z_1| + |z_2|$ in general; (d) $\overline{z_1 + z_2} = \overline{z_1} + \overline{z_2}$ and $\overline{z_1z_2} = \overline{z_1z_2}$.

Solution. (a) We want to show that $Re(z_1 + z_2) = Re(z_1) + Re(z_2)$. Let $z_1 = a_1 + ib_1$, $z_2 = a_2 + ib_2$, then

$$z_1 + z_2 = (a_1 + a_2) + i(b_1 + b_2).$$

Hence

$$Re(z_1 + z_2) = a_1 + a_2$$

and clearly

$$Re(z_1) + Re(z_2) = a_1 + a_2.$$

Let us show that in general $Re(z_1z_2) \neq Re(z_1)Re(z_2)$. We have

$$z_1z_2 = (a_1 + ib_1)(a_2 + ib_2) = (a_1a_2 - b_1b_2) + i(a_1b_2 + a_2b_1),$$

therefore

$$Re(z_1z_2) = a_1a_2 - b_1b_2.$$

On the other hand

$$Re(z_1)Re(z_2) = a_1a_2 \neq a_1a_2 - b_1b_2$$

in general.

(b) We want to show that $\text{Im}(z_1+z_2)=\text{Im}(z_1)+\text{Im}(z_2)$. From part (a) we have that $z_1 + z_2 = (a_1 + a_2) + i(b_1 + b_2).$

Hence

$$\operatorname{Im}(z_1 + z_2) = b_1 + b_2$$

and clearly

$$\operatorname{Im}(z_1) + \operatorname{Im}(z_2) = b_1 + b_2.$$

Let us show that in general $\text{Im}(z_1z_2) \neq \text{Im}(z_1)\text{Im}(z_2)$. We have

$$z_1z_2 = (a_1 + ib_1)(a_2 + ib_2) = (a_1a_2 - b_1b_2) + i(a_1b_2 + a_2b_1),$$

therefore

$$\operatorname{Im}(z_1 z_2) = a_1 b_2 + a_2 b_1.$$

Date: September 13, 2004.

On the other hand

$$\text{Im}(z_1)\text{Im}(z_2) = b_1b_2 \neq a_1b_2 + a_2b_1$$

in general.

(c) We want to show that $|z_1z_2| = |z_1||z_2|$. From part (a) we have

$$z_1 z_2 = (a_1 + ib_1)(a_2 + ib_2) = (a_1 a_2 - b_1 b_2) + i(a_1 b_2 + a_2 b_1).$$

Hence

$$|z_1 z_2| = \sqrt{(a_1 a_2 - b_1 b_2)^2 + (a_1 b_2 + a_2 b_1)^2}$$

$$= \sqrt{(a_1^2 a_2^2 - 2a_1 a_2 b_1 b_2 + b_1^2 b_2^2) + (a_1^2 b_2^2 + 2a_1 b_2 a_2 b_1 + a_2^2 b_1^2)}$$

$$= \sqrt{a_1^2 a_2^2 + b_1^2 b_2^2 + a_1^2 b_2^2 + a_2^2 b_1^2}.$$

On the other hand $|z_1| = \sqrt{a_1^2 + b_1^2}$ and $|z_2| = \sqrt{a_2^2 + b_2^2}$. Therefore

$$|z_1||z_2| = (\sqrt{a_1^2 + b_1^2})(\sqrt{a_2^2 + b_2^2}) = \sqrt{(a_1^2 + b_1^2)(a_2^2 + b_2^2)} = \sqrt{a_1^2 a_2^2 + b_1^2 b_2^2 + a_1^2 b_2^2 + a_2^2 b_1^2}$$
 which is equal to $|z_1 z_2|$.

Let us show that $|z_1 + z_2| \neq |z_1| + |z_2|$ in general. From part (a) we have

$$z_1 + z_2 = (a_1 + a_2) + i(b_1 + b_2).$$

Hence

$$|z_1 + z_2| = \sqrt{(a_1 + a_2)^2 + (b_1 + b_2)^2}$$

On the other hand

$$|z_1| + |z_2| = \sqrt{(a_1 + a_2)^2 + (b_1 + b_2)^2}$$

and

$$\sqrt{(a_1+a_2)^2+(b_1+b_2)^2} \neq \sqrt{(a_1+a_2)^2+(b_1+b_2)^2}$$

in general (choose for example $a_1 = 1, b_1 = 0, a_2 = 0, b_2 = 1$).

(d) We want to show that $\overline{z_1 + z_2} = \overline{z_1} + \overline{z_2}$. From part (a) we have

$$z_1 + z_2 = (a_1 + a_2) + i(b_1 + b_2)$$

then

$$\overline{z_1 + z_2} = (a_1 + a_2) - i(b_1 + b_2).$$

On the other hand

$$\overline{z_1} + \overline{z_2} = (a_1 - ib_1) + (a_2 - ib_2) = (a_1 + a_2) - i(b_1 + b_2)$$

which is equal to $\overline{z_1 + z_2}$.

Let us show that $\overline{z_1z_2} = \overline{z_1z_2}$. From part (a) we have that

$$z_1 z_2 = (a_1 a_2 - b_1 b_2) + i(a_1 b_2 + a_2 b_1).$$

Hence

$$\overline{z_1 z_2} = (a_1 a_2 - b_1 b_2) - i(a_1 b_2 + a_2 b_1).$$

On the other hand,

$$\overline{z_1 z_2} = (a_1 - ib_1)(a_2 - ib_2) = (a_1 a_2 - b_1 b_2) - i(a_1 b_2 + a_2 b_1)$$

which is equal to $\overline{z_1 z_2}$.

4. Establish the following results:

$$\begin{array}{l} (\mathbf{a})z + \overline{z} = 2\mathrm{Re}z, \\ (\mathbf{b})z - \overline{z} = 2i\mathrm{Im}z, \\ (\mathbf{c})z_1\overline{z_2} + \overline{z_1}z_2 = 2(z_1\overline{z_2}) = 2\mathrm{Re}(\overline{z_1}z_2), \\ (\mathbf{d})\mathrm{Re}z \leq |z|, \end{array}$$

(e) $\operatorname{Im} z \leq |z|$,

$$|z_1| = |z_1|$$

 $|z_1| = |z_2| = |z_1|$

(f)
$$|z_1\overline{z_2} + \overline{z_1}z_2| \le 2|z_1z_2|$$
,
(g) $(|z_1| - |z_2|)^2 \le |z_1 + z_2|^2 \le (|z_1| + |z_2|)^2$. [Use part (f).]

Solution.(a) Let z = a + ib, then

$$z + \overline{z} = (a + ib) + (a - ib) = 2a = \text{Re}z;$$

(b) Let z = a + ib, then

$$z - \overline{z} = (a + ib) - (a - ib) = 2ib = 2\operatorname{Im} z;$$

(c) Let
$$z_1 = a_1 + ib_1$$
 and $z_2 = a_2 + ib_2$, then
$$z_1\overline{z_2} = (a_1 + ib_1)(a_2 - ib_2)$$

$$= (a_1a_2 + b_1b_2) + i(b_1a_2 - a_1b_2),$$

$$\overline{z_1}z_2 = (a_1 - ib_1)(a_2 + ib_2)$$

$$= (a_1a_2 + b_1b_2) - i(b_1a_2 - a_1b_2)$$

and

$$z_1\overline{z_2} + \overline{z_1}z_2 = 2(a_1a_2 + b_1b_2).$$

Hence

$$2\operatorname{Re}(z_1\overline{z_2}) = 2\operatorname{Re}(\overline{z_1}z_2) = z_1\overline{z_2} + \overline{z_1}z_2 = 2(a_1a_2 + b_1b_2);$$

(d) Let z = a + ib, then

$$|z| = \sqrt{a^2 + b^2} \ge \sqrt{a^2} = |a| \ge a = \text{Re}z;$$

(e) Let z = a + ib, then

$$|z| = \sqrt{a^2 + b^2} \ge \sqrt{b^2} = |b| \ge b = \text{Im} z;$$

(f)Let $z_1 = a_1 + ib_1$ and $z_2 = a_2 + ib_2$, then using part (c) and part (d) we get,

$$|z_1\overline{z_2} + \overline{z_1}z_2| = 2|\operatorname{Re}(z_1\overline{z_2})| \le 2|z_1\overline{z_2}|;$$

(g) Let $z_1 = a_1 + ib_1$ and $z_2 = a_2 + ib_2$, then

$$(|z_{1}| - |z_{2}|)^{2} = (|z_{1}|^{2} + |z_{2}|^{2}) - 2|z_{1}||z_{2}|;$$

$$|z_{1} + z_{2}|^{2} = (z_{1} + z_{2})\overline{(z_{1} + z_{2})}$$

$$= (z_{1} + z_{2})\overline{(\overline{z_{1}} + \overline{z_{2}})}$$

$$= z_{1}\overline{z_{1}} + z_{1}\overline{z_{2}} + z_{2}\overline{z_{1}} + z_{2}\overline{z_{2}}$$

$$= (|z_{1}|^{2} + |z_{2}|^{2}) + (z_{1}\overline{z_{2}} + z_{2}\overline{z_{1}});$$

$$(|z_{1}| + |z_{2}|)^{2} = (|z_{1}|^{2} + |z_{2}|^{2}) + 2|z_{1}||z_{2}|.$$

To simplify let $A = (|z_1|^2 + |z_2|^2)$. We ant to show that $(|z_1| - |z_2|)^2 \le |z_1 + z_2|^2 \le (|z_1| + |z_2|)^2$. The above identities imply that this is equivalent to showing

$$A - 2|z_1 z_2| \le A + (z_1 \overline{z_2} + z_2 \overline{z_1}) \le A + 2|z_1 z_2|.$$

Hence we have to prove that

$$-2|z_1z_2| < (z_1\overline{z_2} + z_2\overline{z_1}) < 2|z_1z_2|.$$

Part (f) implies that

$$|z_1\overline{z_2} + \overline{z_1}z_2| \le 2|z_1\overline{z_2}|,$$

moreover it is always true that

$$-|z_1\overline{z_2} + \overline{z_1}z_2| \le (z_1\overline{z_2} + \overline{z_1}z_2) \le |z_1\overline{z_2} + \overline{z_1}z_2|.$$

Thus we conclude that

$$-2|z_1z_2| \le -|z_1\overline{z_2} + \overline{z_1}z_2| \le (z_1\overline{z_2} + \overline{z_1}z_2) \le |z_1\overline{z_2} + \overline{z_1}z_2| \le 2|z_1z_2|$$

which is what we wanted to show.

- **5.** Express the following quantities in the form a + ib, where a and b are real:
 - (a) $(1+i)^3$, (b) $\frac{1+i}{1-i}$, (c) $e^{\pi i/2}$,
 - (d) $e^{2+\pi i/4}$, (e) $\sin(\frac{\pi}{4}+2i)$, (f) $\cosh(2+\frac{\pi i}{4})$.

Solution.(a) $(1+i)^3 = 1 + 3i + 3i^2 + i^3 = 1 + 3i - 3 - i = -2 + 2i$;

- (b) $\frac{1+i}{1-i} = \frac{1+i}{1-i}(\frac{1+i}{1+i}) = \frac{1+2i+i^2}{1-i^2} = \frac{2i}{2} = 0+i;$ (c) $e^{\pi i/2} = \cos \frac{\pi}{2} + i \sin \frac{\pi}{2} = 0+i;$
- $(d)e^{2=\frac{\pi i}{4}} = e^2(e^{\frac{\pi i}{4}}) = e^2(\cos\frac{\pi}{4} + i\sin\frac{\pi}{4}) = e^2(\sqrt{2}/2 + i\sqrt{2}/2) = e^2\sqrt{2}/2 + ie^2\sqrt{2}/2;$
- (e) $\sin(\frac{\pi}{4} + 2i) = (\sin\frac{\pi}{4}\cosh 2) + i(\cos\frac{\pi}{4}\sinh 2) = \cosh 2/\sqrt{2} + i\sinh 2/\sqrt{2};$
- $(f)\cosh(2 + \frac{\pi i}{4}) = (\cosh 2 \cos \frac{\pi}{4}) + i(\sinh 2 \sin \frac{\pi}{4}) = \cosh 2/\sqrt{2} + i \sinh 2/\sqrt{2}.$
- **9.** Prove that e^z possesses no zeros, that the zeros of $\sin z$ and $\cos z$ all lie on the real axis, and that those of $\sinh z$ and $\cosh z$ all lie on the imaginary axis.

Solution. We have to show that $e^z \neq 0$ for all z. Let z = x + iy, then

$$e^z = e^{(x+iy)} = e^x e^{iy} = e^x (\cos y + i \sin y).$$

Since $e^x \neq 0$ for all x real, $e^z = 0$ if and only if $\cos y = \sin y = 0$ for a real number y, which is not possible. Hence $e^z \neq 0$ for all z.

Now we want to prove that the zeros of $\sin z$ and $\cos z$ are real. Let z = x + iy, then (identity (32) pg 544)

$$\sin(x+iy) = \sin x \cosh y + i(\cos x \sinh y).$$

Therefore sin(x + iy) = 0 if and only if

$$(1)\sin x \cosh y = 0$$

and

 $(2)\cos x \sinh y = 0.$

Observe that

$$\cosh y = \frac{e^y + e^{-y}}{2} \neq 0,$$

for all y, therefore if (1) holds, we must have $\sin x = 0$ which implies $\cos x \neq 0$. Thus, if (2) holds, we must have

$$\sinh y = \frac{e^y - e^{-y}}{2} = 0$$

which implies y = 0. Hence the zeros of $\sin z$ are real.

Analogously, (identity (32) pg 544)

$$\cos(x + iy) = \cos x \cosh y + i(\sin x \sinh y).$$

Therefore if we assume $\cos(x+iy)=0$, we must have

$$(1)'\cos x \cosh y = 0$$

and

$$(2)'\sin x \sinh y = 0.$$

Since $\cosh y \neq 0$, for all y if (1)' holds, we must have $\cos x = 0$ which implies $\sin x \neq 0$. Thus, if (2)' holds, we must have $\sinh y = 0$ which implies y = 0. Hence the zeros of $\cos z$ are real.

Finally we want to show that the zeros of $\sinh z$ and $\cosh z$ are imaginary. The following identity (identity (32)pg 544)

$$\sinh(x+iy) = \sinh x \cos y + i(\cosh x \sin y).$$

implies that sinh(x + iy) = 0 if and only if

$$(3)\sinh x\cos y = 0$$

and

$$(4)\cosh x \sin y = 0.$$

Since $\cosh x \neq 0$, for all x, (4) implies $\sin y = 0$ and so $\cos y \neq 0$. Hence, if (3) holds, we must have $\sinh x = 0$ which implies x = 0. Hence the zeros of $\sinh z$ are imaginary. Analogously, (identity (32) pg 544)

$$\cosh(x + iy) = \cosh x \cosh y + i(\sinh x \sin y).$$

Therefore cosh(x + iy) = 0 if and only if

$$(3)' \cosh x \cos y = 0$$

and

$$(4)' \sinh x \sin y = 0.$$

Since $\cosh x \neq 0$, for all x, (3)' implies that $\cos y = 0$ and so $\sin y \neq 0$. Thus, if (4)' holds, we must have $\sinh x = 0$ which implies x = 0. Hence the zeros of $\cosh z$ are imaginary.

6

10.3. Other Elementary Functions. .

12. Show that the nth roots of unity are of the form ω_n^k $(k=0,1,\ldots,n-1)$, where $\omega_n = \cos(2\pi/n) + i\,\sin(2\pi/n).$

Solution. We need to solve the equation $z^n = 1$. The principal value of the argument θ of unity is $\theta_P = 0$. Hence, from the formula derived in class,

$$z = |1|^{1/n} e^{i(\theta_P + 2k\pi)/n} = \left(e^{i2\pi/n}\right)^k = (\omega_n)^k, \quad k = 0, 1, 2, \dots, n-1,$$

where $\omega_n = e^{i2\pi/n} = \cos(2\pi/n) + i \sin(2\pi/n)$.

13. Determine all possible values of the following quantities in the form a+ib, and in each case give also the principal value, assuming the definition (39):

(a)
$$\log (1+i)$$
, (b) $(i)^{\frac{3}{4}}$, (c) $(1+i)^{\frac{1}{2}}$.

Solution. (a) $\log(1+i) = \log\sqrt{2} + i(2k\pi + \frac{\pi}{4})$, where k is an integer. The principal value is $\log \sqrt{2} + i \frac{\pi}{4}$.

(b) $(i)^{\frac{3}{4}} = \sqrt[4]{(i)^3} = \sqrt[4]{e^{i(\frac{3\pi}{2} + 2k\pi)}} = e^{i(\frac{3\pi}{8} + \frac{k\pi}{2})} = \cos(\frac{3\pi}{8} + \frac{k\pi}{2}) + i\sin(\frac{3\pi}{8} + \frac{k\pi}{2}), \text{ where } k = 0, 1, 2, 3.$ The principal value is $\cos\frac{3\pi}{8} + i\sin\frac{3\pi}{8}.$ (c) $(1+i)^{\frac{1}{2}} = e^{\frac{1}{2}\log(1+i)} = e^{\frac{1}{2}(\log\sqrt{2} + i(2k\pi + \frac{\pi}{4}))} = \sqrt[4]{2}(\cos(\frac{\pi}{8} + k\pi) + i\sin(\frac{\pi}{8} + k\pi)), \text{ where } \frac{\pi}{8}$

k=0,1. The principal value is $\sqrt[4]{2}(\cos\frac{\pi}{8}+i\sin\frac{\pi}{8})$.