SOLUTION SET III FOR 18.075-FALL 2004

10. FuncTIiONS OF A COMPLEX VARIABLE

10.7. Taylor Series.

48. Obtain each of the following series expansions by any convenient method:

) =Y (el <o)
= — == 1) z| < o0
2 31 "Bl 27 n ) ’
coshz—1 1 22 24 > 22"
2 — _ . —
@ 22 STRVTIRATIN HZ:O Gnroy A <)
(3) - :1+22+§z2+§z3+ (lz] < 1)
11— 2° T37 T !
2 2
a z+a (z+a)
4 — =142 3 < .
(@) C =122t BB L (<)
Solution. (a) We repeat what we did in class. For |z| < oo,
A 22 2

Since the series in parenthesis is absolutely convergent (by the same criterion used to prove
the absolute convergence of the Taylor series of e’* and sin z) we can divide by z both terms
of the above equality. Thus we get

2 [e.e]

sin z z
=1-—+ .
z 3! Z 2n—|—1)

From the uniqueness of the Taylor series we have that the series on the right hand side is
the Taylor series of sin z/z.

(b) From the formulas cos z = (e** + e~%*)/2 and cosh z = cos(iz), we get for |z| < oo:
2 4 2

z z 1 =z

coshz—1—§+g—m: (2'4_54_ )
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Since the series in parenthesis is absolutely convergent (by the same criterion used to prove
the absolute convergence of the Taylor series of e and cosh z) we can divide by 22 both
terms of the above equality. Thus we get

2 A tata T

coshz—1 1 22 2 z
D
From the uniqueness of the Taylor series we have that the series on the right hand side is
the Taylor series of (cosh z — 1)/22.
(c)From the definition of e* we have that, for |z| < oo,
22 28
=14z —|— — —|— 3 + ...

while, for |z] < 1,

=1+24+22+...
1—2z

Since the above series are absolutely convergent, we can multiply them term by term and
we obtain a series which converges absolutely to the product e?/(1 — z) in the disk |z| < 1.
Therefore, in |z| < 1, we have

62

1—2z

=(1+z+22+. )+ (+2+2 4.0+ %(zz—i—z?’—i—...) =1+2z+ gz2+...
From the uniqueness of the Taylor series, the series on the right hand side is the Taylor
series of €*/(1 — z).

(d) Observe that a?/22 = 1/[1 — (z + a)/a]?. Therefore, using the geometric series
1/(1 —w) = Y22 yw™ |w| < 1 and differentiating in w term by term as 1/(1 — w)? =
(d/dw)[1/(1 —w)] = Z;’io(n + 1) w", |w| <1 forw=(z+a)/a, we get:

o
a Zn—{—l <Z+“>, Iz +a < |al.

Then

2 2
a zZ+a z+a
2—2:1—|—2 ” +3( a2) + .. (|z +a| < |al).

10.8. Laurent Series.

51. Expand the function f(z) = 1/(1 — 2) in each of the following series:

(a) a Taylor series of powers of z for |z| < 1;

(b) a Laurent series of powers of z for |z| > 1;

(c) a Taylor series of powers of z+1 for |z+1| < 2, by first writing f(z) = [2—(2+1)]
U1 (o 4 1)/2)

(d) a Laurent series of powers of z + 1 for |z + 1| > 2, by first writing f(z) = —[1/(z +
DI/ - 2/( + 1))
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Solution. (a)In the disk |z| < 1, we have

which is the familiar geometric series.
(b)In |2| > 1 we have,

1 1z 11 _

1—2 1/z—1  z(1-1/2)
DIOEION
Zn*OZ nzOZ
11 1

where we have used the geometric series expansion for 1/(1 — 1/z) in |1/2] < 1 or, equiva-
lently, |2z| > 1.

(c)Using the geometric series expansion for the function 1/[1—(z+1)/2] in |(24+1)/2| < 1
or, equivalently, |z + 1| < 2, we have:

11 1 Il 241\ K (z+ )"
1—z_§[1—(z+1)/2]_§nzzo< 2 > —Zw~

n=0

(d)Using the geometric series expansion for the function 1/[1—2/(z+1)] in |2/(2+1)] < 1
or, equivalently, |z 4+ 1| > 2, we get:

11 1 1 i 2 \" i 2"
l—2  2+1[1-2/(z+1)] 2+14\z+1) & (z+1)mH

52. Expand the function f(z) = 1/[2(1—2)] in a Laurent (or Taylor)series which converges
in each of the following regions:

(a) 0 < |z] <1, (b) |2] > 1,

(c)0<|z—1]<1,(d) |z —1| > 1,

(e |lz4+1 <1, (f) 1< |z+1] <2,

(g) |z +1] > 2.

Solution.(a)Using the geometric series expansion for 1/(1 —z) in 0 < |z|] < 1 we get:

1
z(1—2) - —Zz Zz

n=-—1

1
= “Hl4z+22+..
z
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(b)Using part (b) of exercise 51 we get, in |z| > 1,

1 T N |
2(1—2) ;nz:(]z"“_nZ:Oz”Jr2
111
22 23 A

(c)Using the geometric series expansion for 1/[1 — (1 —2)] in 0 < |z — 1] < 1, we get:

o0 o

1 1 1 1 0 .
m s B s ¥ e R DG SR DS S

1
= — 41+ (1-2)+1—2)72%+..
1—=2
(d)Using the geometric series expansion for 1/[1 —1/(1 —2)] in 1/|z — 1] < 1 or, equiva-
lently, |z — 1| > 1, we get:

1 1 1 — 1 = 1
21—z _[1—1/(1—z)](1—z)2:_(1—z)2nzo(1_z)n:_;)(1—,2)%2

B 1 1 1
T OTO—e (-2 G-ar

(e)Using the geometric series expansion for 1/[1 — (z +1)] in |2+ 1| < 1 and the one for
1/[1 = (z+1)/2] in |z + 1| < 2, we get in |z + 1| < 1 (overlap region of the two disks of
convergence):

1 ~1 1 1 > n L= [z +1\"
A1—z2) 1—(z+1)+§(1—(z+1)/2):_nZO(ZH) +§HZO< 2 ) -
o'} n+1
S S P Nerr= 3y Tery.
Z 2 2 1 8

(f)Using the geometric series expansion for 1/(1 —1/(z + 1)) in |z 4+ 1| > 1 and the one
for 1/(1 —(2+1)/2) in |z + 1| < 2, we get in 1 < |z + 1| < 2 (intersection of the two disks
of convergence):

1 1 1

-2  GiDa-1GT) "

)

1 = 1 1

B z+lz(z+1)"+§
oo

0
1 1 241,
= Ly i)

n=0

1 1
2(1—(z2+1)/2)

> (5 -

n=0

(g)Using the geometric series expansion for 1/[1 —1/(z + 1)] in |z 4+ 1| > 1 and the one
for 1/(1 —2/(z+1)) in |z + 1| > 2, we get in |z + 1| > 2 (intersection of the two disks of
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convergence):
1 B 1 1 1 1 B
z2(1—2) (+1)A—-1/(z+1) (+1)A-2/(z+1))
 — 1 — 2 \"
- z—i—lnzzo(z—i—l)"z—i—lnzzo<z+l> -
> 1 > on

n 1 _ 1 7 1 _
- LN e ey

10.9. Singularities of Analytic Functions. .

61. Locate and classify the singularities of the following functions:
2
(&) 75, (b) Z3—1+1, (c) log(22 + 1), (d) (22 — 32+ 2)3, (e) tan z, (f) tan~1(z — 1).

Solution. (a)We have

N VIS S
2+1  2'z2—i z+i
Then 7 has a simple pole at z +1i =0, i.e., z = —i, since (z +1) 77 = 7 is analytic
at z = —¢ with value # 0. Similarly, ZQZ? has a simple pole at z — i = 0, i.e., z = i, since
ZLH is analytic at z = ¢ with value # 0.
(b) We have
11 1 1
- — : : : —.
2241 z4+1 Z_(1+§\/§) Z—(l é\/g)
So Z3—1+1 has simple poles at z = —1, z = 1+;\/§’ and z = 17;‘/5.
(c) We have

log (22 +1) = log[(z41)(z —1)] = log(z+1i)+log(z —1),

where we possibly add integral multiples of 27i to the right-hand side. We see that
log (2 4+ ¢) in the right-hand side has a branch point at z = —i, and log (z —4) is ana-
lytic at z = —i. So log (22 + 1) has a branch point at z = —i. Similarly, since log (z — i)
has a branch point at z = i and log (2 + i) is analytic at z = 4, log (22 + 1) has a branch
point at z = 1.

(d) We have

(2232423 =[(z—2)(z - D)>P=w?3, w=(z—2)(z—1).

So (2% — 3z + 2)% has branch points at w = (z —2)(z — 1) =0, i.e.,, at z =2 and z = 1.
(e) We have

sin z

tanz = .
CoS 2
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So tan z has poles at cos z = 0. Hence, the singularities of tan z are z = z,, = n7+ 5, where
n:integer, and each of these singularities is a pole. Note that (z — z,,) tan z is analytic in a
vicinity of z = z,. In particular,

lim [z — (nm+ I)] tanz = —1.
z—nT+5 2

It follows that all these poles are simple.
(f) First, we find a formula for tan~! 2z (check with p. 550 of textbook). Let w = tan~! 2.

sin w L g2iw _ w 2w __ 141z

Then z = tanw = 20 = Ze2““+1 By solving with respect to e** we get e*¥ = —f or
w = tan ! :—1 og il ! —[log(z — i) —log(z + 7)],
23 z+1 T2

with the possible addition of integral multiples of 27i to the right-hand side. It follows that
tan~! 2 has branch points at z = &i. Hence, tan~'(z — 1) has branch points at z — 1 = =i,
or z=1=+1.

62. Show that the function

() fz) = —=——

has a simple pole at the origin.

Proof. Clearly,

coshz—1 = 2(2 )'—
n

n=1
and
S 2n+1 3
hz — 2 — .
sinhz — 2 Z 2n+1)! Z 2n+3
Let
o
9(2) = Z 2n+2
and

hz) = Z 2n + 3)!

Then both g(z) and h(z) are analytic functions in the complex plane (set C) and have
nonzero values at the origin, g(0) # 0 # h(0). It’s clear that coshz — 1 = z2¢(z), and

sinhz — z = 23h(2). So f(z) =1 Zg)) Thus, f(z) has a simple pole at the origin.
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10.12. Residues.

78. Calculate the residues of the following functions at each of the poles in the finite part
of the plane:

z

e sin z sin z 22 ez er—1_
(a) 221a2> (b) ﬁa (C) 22 (d) 23 (e) Z(lztl)% (f) (z2+1a2)2’ (g) 2225242 (h) 17221’
. 2
(i) 1—cosaz’ (,]) sinh 2 (k) 2 (1) (1—cos z) '

29 cosh z—1? sin” 2z’ z7

Solution. In the following, we use the notation

Res(a) = Res,—q[f(2)] = Res[f(z),al.
(a) We have the formula

e? e

22+a?2  (z+ai)(z—ai)

So Z2+ > has simple poles at z = =+ai.
z e? eai
R = — -
65[22+ 7] z+az|z al 2ai’
e? e? e—ai
Res|——,—ai] = ——ai = — .
68[22 +a?’ @l z —ai lo=—ai 2ai
(b) We have
1 B 1
A—at  (z+4a)(z—a)(z+ai)(z —ai)’

So Z4ia4 has simple poles at +a, *ai.

1 1
Res|[—— = = —
65[24 —a4’a] (z—|—a)(z+ai)(z—ai)|z_a 4a3’
1 1
Res[——,—a] = ey = ———,
65[24—614’ 4l (z—a)(z+ai)(z—ai)|z_ ¢ 4a3
1 1 1
R )| = =
68[24 at’ ai (24 a)(z —a)(z + ai) lo=ai 4ia3’
1 1
R —ai] = =
68[24 —a?’ @ (z+a)(z—a)(z — ai) le=—ai dia®
(c) We have
sinz 1 sinz
22 2 z
So S;% has a simple pole at the origin, and
sin z sin z
RGS[Z—Z,O] = ‘Z:O = 1.
(d) We have
sin z 1 sin z
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8
So 812 has a pole of order 2 (i.e., double pole) at the origin, and

sin z _ Z 2n+1 _ i(*l)nﬂ

23 23 2n @2n+ 1) = (2n+1)!

Note that the right-hand side has a =2 term but no z~! term. Thus,
Res[% 0] = 0.

237
(e) We have
1+ 22 9 1 1
A — 1) . = .
z(z —1)2 (" +1) z  (z—1)2
So z(12t212)2 has a simple pole at the origin and pole of order 2 at z = 1.
1+ 22 5 1
T ] = 1) - ——— o = 1
Res[z(z_1)27 ] ((2 + ) (2—1)2)‘270 )
L C S S (G Dy D) A
° 2(z—1)277  (2-1)! dz =T gy
1 2
- (2— +22 > — 0.
z z=1
(f) We have
11 1
(22+a2)2  (2+ai)?  (z—ai)?

So G 2+a2)2 has two poles of order 2 (double poles). One pole is at z = ai and the other

one is at z = —ai.
1 : d(z + ai)~2 1
Reslarap el =~ g = = 1y
1 , d(z —ai)~? 1
Res[m, —ai] = T\zzwi = Tidi
(g) We have
eaz eaz
222 —5z+2 2(2—2)(2—%).
Thus, % has simple poles at z =2 and z = %
az 0% 2a
Res|————2] = ———|,—00 = —
65[222—52—1—2’ ] 2(2—%)"2_2 3’
0% 1 0% 6%
Res|———— -] = —— = ——.
5722 T 29 3
(h) We have
R T R Vi S [i (z -1,
(n+ 1)1

— 2 — -
1—2z (1 —=2)(1+2) l+z e~
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Note that > >° @ +1))' is analytic for every (finite) z. Thus, the given function is analytic
at z = 1, with residue equal to 0 at z = 1. Since

i(z—l)"‘ ezfl—l‘ 6*2—17&0
=1 = 7 |e=—1= )
~ (n+1)! ? 1—z ~° 2
it’s clear that e L has a simple pole at z = —1, and
el -1 e 2 -1
Reslg——1l = —5

(i) Evidently, the only pole of 1_‘;# is at z = 0. We have

1 — cosaz 9 & (_1) n+1 2n 2n 9
—— = 1= @ Z
n=0 n=1
Specially, the coefficient of 27! is 78—%8. So
1 —cosaz —a8

Res[ Zg s ] = ?

(j) It’s easy to check that coshz — 1 = 0 for z = i2n7 with n: integer. Thus, the only
possible singularities are poles at z = 2, = i2nw. In order to examine what sort of poles
these are, let t = z — z,,. Then,

. . t2n+1 t2n
sinhz ~ sinht > o @nt)!l 1 2 n=0 (2n+1)!
_ - _ - t2n - $2n ’
coshz —1 cosht —1 —1+5>° ~o @)t > el

and
th
ZZO 0 (2n+1
o= @ =0 = 2 # 0.
Zn:(] 2n+2)!

Sot=0,ie., z=z, =1i2nm, is a simple pole of Cssiﬁ};fl, and
[ sinh z 0] 5
es[———— = 2.
coshz — 1’
(k) sinz has zeros at z = km, where k: integer, and each of these zeros is simple.
Accordingly, o at z = km, where k # 0.
z z
Res ,0] = lim 2 = 1,
[81112 z ] 20 sin? z
and, for k # 0 (k: integer),
z d z
Res[—— kn] = lim —((z — kn)? = 1.
[sin2 z ] z—kr dz (( ) sin? z)

Alternatively, by setting ¢t = z — kmr,
z t+kr t4+kr  km 1

3 ~

sinfz  sin?t 12 2t
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For k = 0, the =2 term vanishes and, hence, z = 0 is a simple pole. For k # 0, the ¢t 2
term is nonzero and, hence, z = km, k # 0, is a double pole. In each case, the coefficient of

the ¢! term is 1. Thus, the residue is 1.
< ~)2
(1) The only possible pole of (=cos2)” is » = 0. Let

Z7
cosz — 1
g(z) - 22 .

Then g(z) is analytic, g(0) = —1 # 0, ¢/(0) =0, and ¢”(0) = & . We have

(1 — cos z)? _
R OIS
So (kczﬂ has a pole of order 3 at z = 0, and
(1 — cos z)? B 1 d*(g(2))?
Res| 27 0 = (3=1)! dz? l2=0
_ 1d(29(2)g’(Z))‘
2 dz #=0

= ((4'(0))* + g(0)g"(0))
11 -1
2 12 247

Alternatively, we expand this function in Laurent series as follows:

(1—cosz)? 1 (cosz—1>2

27 23 22
2
1 1
e S T ) _,-3(1 2
=z <2+24z+ ) z (4 24z+ >
11 11
423 24z

Clearly, the residue is —1/24. I personally find this alternative way faster!
Note: In the above, we use the symbol ~ to mean “approximately equal to” in cases
where we neglect the other terms in Laurent series.

79. If f(2) has a pole of order m at z = a, prove that

1 dM—l

Resta) = 1 | a1 .

for any positive integer M such that M > m.
Solution. By definition of the point z = a as a pole of order m, f(z) admits the Laurent
expansion

c— C—m+1 C—1
f(z) = (z—;r;)m+(z—;r;)m*1+ +Z_z0—|—co—|—cl(z—z0)—|— e
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where c_1 is the residue. It follows that
(z—20)M f(2) = com(z—20) M ™+t (z—20)M b L e (z—20)M e (z—20)M ..
We see that, for M > m, this last expansion is a Taylor series. In particular, the coefficient
c_1 multiplies (z — z9)™~! and thus must be equal to the derivative of order M — 1 of
(z — 20)M f(2) at z = a divided by (M — 1)!:

M—1
T | e =M 1)

C_1 =
z=a

80. (a) If f(z) is that branch of logz for which 0 < #p < 27, determine the sum of the
residues of f(z)/(2% + 1) at its poles.
(b) Proceed as in part (a) when the restriction on 0p is —m < p < 7.

Solution. The denominator in f(z)/(z?+ 1) vanishes at z = £i. Thus, the possible poles
are z = +i. Because the function (z F z)% = % is analytic in a vicinity of z = £¢ in
the respective branch of log z, and its value at z = =44 is nonzero, these poles are simple.
The value of log z at z = re? is log z = log r + i(6 + 2k7) where k: integer and logr (r > 0)
is the usual logarithm for real functions. The principal value is found by setting £ = 0 and
0 =0p.

(a) At z =i = /2 0p = n/2 while at z = —i = e /2 0p = —iw/2 + 21 = 37/2.
Hence, logi = im/2 and log(—i) = i37/2. It follows that

loo i
. . . log(—1 3
Res[z-’;(j)ljz = i) = lim[(= +1) Z{(j)l] _ og_(2i1) _ _ZW'
So, the desired sum is
Res[f(z),z =i]| + Res[f(z),z = —i| = _g‘

(b) In this case, z =i has §p = 7/2 and z = —¢ has p = —n/2. Hence, logi = in/2
and log(—i) = —im/2. Accordingly,

o 1
RGS[Z‘}QC(j)l,z = ] = lim[(= — Z’)Z{(j)l] - % _ %7
low(_i
Res[zg(i)rz = —i] = i:rnz[(z + i)zé(j)l] _ Ogi(%l) _ %

So, the desired sum is

Res[zé(j)l,z =] + Res[zg(j)l,z = —i] = g

81. (a) If f(z) is that branch of the function e%*'”? for which 21/2 = rl/2¢ir/2 with
0 < 0p < 27, determine the sum of the residues of f(z)/(z2 + 1) at its poles.
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(b) Proceed as in part (a) when —7m < 0p < 7.

Solution. Similarly to Prob. 80 above, the denominator in f(z)/(z% + 1) vanishes at

z = 4i. Thus, the possible poles are z = +i. Because (z F i) i(j)l = J;(L) is analytic in

az1/2

the vicinity of z = 44 in the respective branch of e and its value at z = £i is nonzero,

these poles are simple. ‘
(a) At z =i = €™/2, 0p = n/2 while at z = —i = e /2 fp = —in/2 4+ 27 = 37/2.

Hence, (i)1/2 = ™/ = % and (—4)1/2 = B37/4 = 7\1/%”. It follows that
f(z) L L f(?) B ea(1+i)/V2
Res[z2+1’z_z]_£ni[(z Z)z2+1 2
&) N f(z) a2
RQS[Z2+1,Z— z]-i:rr;[(z—i—z) 22—1—1]_ o
So, the desired sum is
f(z) . f(2) a2 ed/V2 _ g=a/V2
Res[z2+1,z—z]+Res[z2+1,z— i] = —ie —

= —ie'/V2 sinh(a/V/2).
(b) In this case, z =i has 0p = 7/2 and 2 = —i has fp = —7/2. Hence, ()% =e
and (—i)Y/? = e~""/* = 120 Accordingly,

i /4

e
Res O =i = e - S -
Res[zé(j)l =i =1ml(z+9) ZJ; (j)l] _ eaﬂ_;)i/wz‘
So, the desired sum is
Res{Zé(j)l’z =1+ Res[zé(_i)l’z _ = oy Gia/V3 ;ie_ia/\/i

= ¢¥/V? sin(a/v2).



