SOLUTION SET IV FOR 18.075-FALL 2004

10. FuNcTIONS OF A COMPLEX VARIABLE

10.12. Residues. .

In the following, I use the notation
Res,—., f(z) = Res(z9) = Res[f(z), 20),
where Res is the residue of f(z) at (the isolated singularity) zo.

j{ dz
022—1

when C is the curve sketched in Figure 10.21.

82. Evaluate the integral

Solution. ﬁ has two simple poles. One is at z = 1, the other is at z = —1. It’s easy to

check that Res[ﬁ, 1] = 3, and Res[zz—l_l,—l] = —3. The pole at z = 1 is encircled in
the counterclockwise (positive) sense, while the pole at z = —1 is encircled in the clockwise
sense. Hence,

d 1 1
fé,zQ j 1 = 27TZ‘R€S[m, 1] — 27'('Z.R€S[m7 —1] = T — (—ﬂ'z) = 2.

88 Determine the residue of each of the following functions at each singularity:
1
(a) ez, (b) €2, (c) cos ==, (d) (1+ 22)e:.

z—m?

Solution. (a) We have

B [eS) 5 . %) 5
ex = E — = 1+z + E —
n: :
n=0 n=2 n

So e* has an essential singularity at z = 0, and
Res[e%,O] = 1
(b) We have

|~

. 0 Z—2n B L 0 Z—2n
ex2 = = 1+27°+ |
mn. mn.
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1
So e=? has an essential singularity at z = 0, and

Res[ezi?,O] = 0.

(c) We have
2n

Z—T['_Z z—7r2"(2n)'

(Note that the coefficient of ﬁ is 0.) So cos "= has an essential singularity at z = 7, and

Res|[cos ,m] = 0.
z—T
(d) We have
u+£y%—(ym%§ﬁj
B = n!
= (1+22)(1+2_1+£+ﬁ+iﬁ
B 2 6 —
3 7 -1 . —1
= 3 + 6% + [higher powers of z™].
So (1+ 22)6% has an essential singularity at z = 0, and
Res|(1 +Z2)6%,0] = g

10.13. 10.13 Evaluation of Real Definite Integrals.

90. Use residue calculus to evaluate the following integrals:

27
a) 0 A—l—ggsmﬁ \/A2 (A > ’BD

27 _de 2 dg o o
b) Jo a2+51n29 0 50?0 — avaiil (a>0),

(
(
(c) fo sin 9d0—f2c0549 do = 37
(

) ) 167
T sin“6
d) 5+4 cos 6 do =

Solution. (a) First make the substitution: z = e, dz = ie?df.
Now the complex z describes the unit circle C in the positive sense as 6 varies from 0
to 2m. So, as was discussed in class, the integral becomes

27 do dz
v A+Bsind ﬁHA+B%

22z

_ jé 2dz
~ Jo, B22+2iAz— B
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The poles of the integrand are simple and occur when Bz? + 2iA 2z — B = 0, which in
turn gives

—iA++/B? - A2
Z4+ =
B
Furthermore,
A2 A2 _ B2
42— = _ﬁ + T = —1.
Therefore, z; is a (simple) pole inside the unit circle. Now using the known formula
Reszzz()% = g,((zzoo)), where zg: simple zero of h(z), we get:
2
R -
es(z+) 2Bz, + 2iA
B 1
A+ iVAZ B2+ A
1
AT B2
Thus, by the residue theorem,
o de B 2i
o A+Bsing /A2 _ B2
B 27
- JAZ _ B2
(b) We manipulate the integrand as follows:
1 B 1 B 2
a2 +sin20 a2+ 1—‘57‘2’529 242+ 1—cos26’

So, with the new variable ¢ = 260,

o df T 2d0
/0 a® +sin?0 /0 2a2 + 1 — cos 26
4m d(p
- /0 202 +1—cosp
_ /27r d(p
0o 2a®>+1—cose

_ /27r d(p
N 0o 2a®2+1—sing’

where we shifted the integration variable by /2 in the integral of the third line and used
the periodicity of the integrand.
By using the result of part (a) above with A =242 + 1 and B = —1, we get

/27r dp 2w B i
0o 2a*+1-—sing V(2a2 +1)2 -1 ava? +1
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Thus,

/27f do L
o a2+sin?0 Va2 + 1

/27r do B /27r do
o a*+cos?0  Jo a?+sin?(0—3)

3T

_/7 do
N _z a? + sin? 6

B /27r d9

Jo a?+sin%6
T

avaZ+1

The integral of the third line ensues from the periodicity of the integrand.
(c) By subtracting the given integrals, we get

/2Sin49 d9—/200549 o = /2(sin49—cos49) de
0 0 0

s

= /2 (sin? @ — cos? 0)(sin? § + cos? 6) df
0

and, hence,

= /2 (sin? @ — cos® 0) db
0

us

= —/ECOSQG do
0

sin29g
- =X
= 0.

/2 sinf do = /2 cost 6 do.
0 0
Then,

2 us T 3m 2
/ sin‘0 do = /zsin49d0+/ sin49d9+/2sin49d9+/3 sin? 0 do
0 0 s T us

2 2

So,

3

= /2 [sin4 0+ sin4(0 + g) + sin4(9 +7) + sin4(9 + 3;)] do
0

= 2 /2(sin49+cos46) db
0

™

_ 4 /2511149 do.
0



SOLUTION SET IV FOR 18.075-FALL 2004 5

This shows

%-4 2 4 1 27T-4
/ sin“ 6 df = / cos 0 df = —/ sin” 6 df.
0 0 4 Jo

But

2 2 _
/ sintf df = j’{ Ly dz
0 o) 2’LZ 1z

1 2 _1\4
_ _,},4 G-
16 Jo, 25

where (] is the unit circle with center at origin. The residue was found easily by noticing
that

(22 -1 22 —420 1621 — 422+ 1

- )

20 20

by which the coefficient of z=! is 6. So,

/2sm49 a9 = /200849 a0 = 5T

0

)

(d) Again, by the usual replacement z = e’

2_1 2
/27r sin? 0 g - j{ (2(27)2— dz
o H+4cosb  Jo s +4Z224Z'1 %

B j{ (22 —1)? &
 Jo, —2i22(102 + 422 + 4)

The simple poles of this integrand occur when 422 4+ 10z +4 = 0, i.e., when z = —% or
z = 2, while a double pole occurs at z = 0. Since z = 2 is not within the unit circle, we
disregard it.
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1 L (2tg) (21
RGS(—i) = ZEE]% —2iz2(222 +1)(z+2)
e
(3
3
~ 16
Res(0) = 2_;1)' [%(z2f(z))] »

(
_|d (22 —1)2
- [E <—2i(422 +10z + 4)>] 0
—4i(22% + 52 + 2)(42% — 42) — (2* — 222 + 1)(—16iz — 207)
[ (—4i)2(222 + 52 4 2)? L:O
—5i
16

Alternatively, you may expand the integrand in z (considering |z| “small”) and find the
coefficient of 21, (Try it for practice!)

Thus,
2T 92 . .
sin” 6 3 b
—df = 2mi|—— —
/0 5+ 4cos 0 m<16 16>
il
4
91. Use residue calculus to evaluate the following integrals:

( >f_oom=§ (a>0),

(b) fO 2+a2 ) = za(agpy (@ >0, 0> 0),
(

(

Q

d) fo 2+a2 = 4% (a > 0)

Solution.

(a) The degree of the denominator is 2 greater than the degree of the numerator and the
function is finite for all real values of x. Thus, we can employ the strategy given in class
by closing the original path with a large semicircle in the upper half plane (or lower half
plane). By shifting the integration variable by —b, we get

o0 dx ©  dr
[ ariyre = [ aven i, ree =om S Reta)

where the points zj are the poles of F(z) = 224_;&2 in the upper half-plane.
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The (simple) poles occur when 22 + a? = 0, that is when z = +iy/(a?) = +ia (since
a > 0). So there is one (simple) pole in the upper half-plane, namely, at z; = ia.

1 1
R = — = —
es() =5 - =9
Thus,

/°° dx o 1 s
— =27 — = —.
oo (D)2 +a? 2ia  a
(b) WM has two singularities on the upper half plane. One of these is at z = at,

the other is at z = bi; both of them are simple poles. Note that the denominator of

m is of degree 4. Accordingly,

/_OO FTAETH = 2mi (Res[(z2 a2y (2 b2)’m] + Res[(zz +a2)(22 +b2)’ bi])
. 1 1
= 2mi (Qai(62 — &) + 2bi(a? — b2))
= abla+b)

. 1 .
Since T @A) 18 even, we get

/°° dz 1 /°° dx B T
0o (@2+a?)(22+02) 2 J_o (@2+a?)(z2+b2)  2abla+b)
(c) m has two singularities on the upper half plane. One of these is at z = \/ie%ia,

the other is at z = ﬂe%a. Both of them are simple poles. Note that the degree of the
denominator of m is 4. Accordingly,

/OO e omi (Res|————, V2T a] + Res|————, V3¢ T a))
———— = 27 (Res|—/——,V2e4a es|[——,V2e 1 a
oo T+ 4a? 24 + 4a*’ 24 + 4a*’

s} 3mi

W en)
o VEOVEL VR VR
T W24 [(7 - 71) - (—7 - 72)]

= 2mi (

4a¥’

Since ——-— is even, we have

zd+4a04
/°° dx 1 /°° dx o7
o zt+4at 2 J_at+4at  8ad

(d) The degree of the denominator is greater than twice the degree of the numerator and
the function is finite for all real values of . We can once again employ the strategy given
in class. Also, note that the integrand is even so that

/°° dx _1/00 dz
0o (@2 +a2)?2 2 ) o (z2+a2)?
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The poles occur when (22 4 a?)? = 0, that is when z = 44a. Thus, there is one pole in
the upper half-plane, i.e., at z = ia, and it is a double pole.

[d (2 —ia)?

Res(ia) = PR +a2)2] B

_ |41
— dz (2 +ia)? —ia

_ —2 }
_(Z +ia)3 z=ia
1
4

Therefore,

92. Use residue calculus to evaluate the following integrals:
Joo Ly = Z e (a > 0, m > 0),

a2+x?
bm

(a)
(b f(] % dr = 2(b27ia2) (e*:m o e*b ) ((L >0,b> 0, m >0, b?é a)’
(

2 +CL2 2 +b2

) [ Gipta dv =% e " cosbm  (a>0,m>0),
ffooo (xilﬁ)% dr = _E e~ sinbm  (a >0, m > 0),
(@) Jy e = e (1 +am) (a > 0,m > 0)
0 15 S = 2 e snam) (020,20,
(f) fooo m;fjr%;zdx = 56 M cosam (a >0, m>0).

Solution. (a) 32%5 has a simple pole in the upper half plane, which is at z = ai.

1 cosmx . [ zsinma 0 gpem
Zrz Bt mrmd = 22
oo @°t+ T Lo A*t T o 0t
mzi
. ze .
= 2mi Res[—5——,ai]
a*+z
s ,—am
. aie
= 2m -
2ai
= mie v,

where we close the path in the upper half plane for the last integral involving e”™*, since

m > 0. The first integral in the first line is of course 0 because the integrand is odd. So,

00 .
I smmx _
/ S 2 dr = me am.
oo @t
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Note that £32™E is even, we have

a?+z2
° xsinmx 1 [ zsinmx
B2l =5 ) S odr =
o a°+x 2 ) o 0 +x

(b) ;2%5 has a simple pole on the upper half plane, which it at z = ai. Since m > 0, we

get
o) [o SR o0 mai
cos M ) sinmx e
Zradrt | Srad = it
s X¥ta s XXt a s XXt a

maxi

—am

ro| 3

= 2m RGS[m, (IZ]

—am

= 2w
2a1

Team

)
a

where we close the path in the upper half plane. The second integral in the first line
vanishes because the integrand is odd. So,

/OO oS mx Team

7(1%‘ =
2 2
o Xt a a

Since %1—’”"5 is even, we have

* cosmz 1 [ cosmzx e
0

z? + a? 2 J_ o 22+ a? 2a
Similarly,
/°° COS T we—bm
poanyo i :
So,
/ > COS T d / ©© 1 ( COS™IT  COSTMT ) d
T = - oy
o (22 +a?)(x?+b2) o b*—a? ‘2?24 a? 2?2 +0b?
1 ° cosmx * cosmz
= — — dxr — —d
b2 — a2 (/0 2+ a? v /0 2 + b2 7)
B 1 (ﬂe_“m 7T6_bm)
2 —q2 2a 2b
T e—am e—bm
T 22— ) ( a b )

(c) The given integrals are evaluated by the standard prescription as follows.

00 () imzx oo im(z—b)
COS Mx e e
/_oo (z + )2 + a2 dw:Re/_oo (x+b)2+a2 de :Re/_oo a2

oo zmx b)
sinmax
=17 de =1 d
/ (x+0)%+a? m/ +b @roP+a™ m/ 2t
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where

o mx mz
e . (& ™ _
—— dr = 2mi Resz:mﬁ = —¢e Me,
0o T+ a zc+a a

Hence,

(o @]
COs M imb T T _
/ ———————dr = Re (e imb Z ¢ m“) = — e "™ cosmb,

oo (+ D)2 +a? a a
&0 sinmx de — I —imb T —ma\ _ T _ma - b
ﬁ Xr = m(e — € )———6 S mao.
oo (D)% +a a a
(d) We can calculate the real part of ffooo (xi%)gdx by noticing that our function is

even. As in question 91(d), we have one pole in the upper half-plane. This is a double pole
at z =1a.

restin) = [ (V5]

_ _i eimz
- ldz \(z+ia)? )| .,

[z +ia)%ime™ — ™2(z + ia)

(T iay L
(2ia)?ime™™m® — e~™M%44q,
(2ia)*

o —ma(ma+1
= i (M)

Therefore,
*  cosmzx 1 > gime
" _dr = =R ——d
/0 @+a2™ T 2 Uoo (@? + a?)? }
1 1

= SRe [2771‘-—1'6—’”“ <%>]
B —ma [Ma+1
- ( 4a3 >

* cosmx 1 0o gimz
————dr=-R ——dx.
/0 T e/_oox4+4a4 “

(e) Clearly,

We calculate the last integral involving e”™* by closing the path in the upper half plane
since m > 0. The poles of the integrand occur at z* + 4a* = 0 and are all simple. The
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poles that lie in the upper half plane are z; = e/™/*y/2a and 2z, = €37/%\/2a. Accordingly,

o emeE d 2 ) R ezmz R elmz
/_OO 7:174—1—4(14 T = m< esz:zlm + 65Z222m>
etmz1 elimz2
= 2m 4+ —
< 42{) 423 )
27 o ' o .
= F[—(casma +isinma)(1 + i) 4+ (cos ma — isinma)(1 — 7)]
a
7T .
= @(COS ma + sin ma)
It follows that
/oo cosmx d ™ ( +si )
———— dx = —=(cosma + sinma).
o z*+4a? 8a3
(f) Once again, we can calculate the imaginary part of fooo %dl’ noting that our

function is even and m > 0. The poles occur when 2% + 44 = 0 = 2z = +v/+2ia?, as in
part (e) above. Thus the roots are:

1 1
a1 = V2ia? = aV2(—= +i—=) = a + ia since a > 0.
V2 V2

ay = —a1=—a—1a.
a3 = +/—2ia? =1ia—a.
ay = -—a3z= —ia+ a.

Thus there are two poles in the upper half-plane: a; and as (both simple poles).

Res(ay) = Zli_)ngl(z —a1)f(2)
~ lim (z — a —ia)z3e™*
z—aq 24 + 4a?
3 imz

lim Z, c .
z—a1 (z + a+ia) (22 + 2ia?)
(a + Z'a)2eim(a+ia)

8ia?

23 eimz

i (z +ia — a)(22 — 2ia?)

2e—zma—ma

Res(as) =

(ta — a)

—8ia
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Therefore,

x4 + 4at v

00 1.3 o
X7 s max
|
0
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1 r roo x3eimx
= I R —
2 m_/_ooa:4+4a4 Jj]

Im _2 (a +ia)?e™a=ma — (jg — a)
= = ™

i 8a
— ZIm :gi(eima —ma —ima —ma)]

2e—ima—ma > :|



