
SOLUTION SET V FOR 18.075–FALL 2004 

10. Functions of a Complex Variable 

10.15. Indented contours. . 

110. By making use of integration around suitable indented contours in the complex plane, 
evaluate the following integrals: 

⎩ 
� sin x(a) 
−� x(x2 +a2 ) dx (a > 0), 

⎩ 
� sin x dx.(b) 
−� x(�2 

−x2) 

Solution. (a) For R > 1 and 0 < � < 1, define the contour C = C1 + C2 + C3 + C4, where 
C1 is the real interval [−R, −�], C2 is the upper half of the circle |z| = � with clockwise 
orientation, C3 is the real interval [�, R], and C4 is the upper half of the circle |z| = R with 
counterclockwise orientation. 

Then 
⎪ ⎪ ⎪ 

� ix� sin x eiz e
dx = Im lim dz � ImP dx. 

x(x2 + a2) R�� 
C1 +C3 

z(z2 + a2) 
−� x(x2 + a2)

−� 
��0 

Moreover, by Theorem 2 of classnotes, 
⎪ ize

lim 
R�� C4 

z(z2 + a2) 
dz = 0, 

and, by Theorem 4 of classnotes, 
⎪ iz ize e �i 

lim 
z(z2 + a2) 

dz = −�i Res[ 
z(z2 + a2) 

, 0] = − . 
��0 C2 

a2 

So, 
⎪ ⎨ ⎪

iz iz ize e e
lim dz = lim dz − lim dz 

R�� z(z2 + a2) R�� 
C z(z2 + a2) R�� 

C2 +C4 
z(z2 + a2)

��0 C1+C3 ��0 ��0 

ize �i 
= 2�i Res[ 

z(z2 + a2) 
, ia] − (− 

2 ) a
−a1 − e

= �i .
2a

Hence, 
⎪ ⎪ 

−a� sin x eiz 1 − e
dx = Im lim dz = � .

2 
−� x(x2 + a2) R�� 

C1 +C3 
z(z2 + a2) a

��0 
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(b) For large R > 0 and small � > 0, define the contour C = C1 +C2 +C3 +C4 +C5 +C6 + 
C7 + C8, where C1, C3, C5 and C7 are the real intervals [−R, −� − �], [−� + �, −�], [�, � − �] 
and [� + �, R], C2 is the upper half of the circle |z + �| = � with clockwise orientation, C4 

is the upper half of the circle |z| = � with clockwise orientation, C6 is the upper half of the 
circle |z − �| = � with clockwise orientation, and C8 is the upper half of the circle |z| = R 
with counterclockwise orientation. 

Then 
⎪ ⎪ ⎪ 

� ix� sin x eiz e
dx = Im lim dz � Im P dx. 

x(�2 − x2) R�� z(�2 − z2) x(�2 − x2)
−� C1 +C3 +C5 +C7 −�

��0 

By Theorem 2 of classnotes, 
⎪ ize

lim 
z(�2 − z2) 

dz = 0, 
R�� C8 

and, by Theorem 4 of classnotes, 
⎪ ize −1 −i 

lim 
z(�2 − z2) 

dz = −�i Res[ 
z(�2 − z2) 

, −�] = , 
��0 2�C2 

⎪ 
iz ize e −i 

lim 
z(�2 − z2) 

dz = −�i Res[ 
z(�2 − z2) 

, 0] = , 
��0 �C4 

⎪ iz ize e −i 
lim 

z(�2 − z2) 
dz = −�i Res[ 

z(�2 − z2) 
, �] = . 

��0 2�C6 

iz 
Since e

2) has no singularities in the upper half plane, we get 
z(�2 

−z

⎨ ize

z(�2 − z2) 
dz = 0, 

C 

This gives 
⎪ ⎪iz ize e 2i 

lim dz = − lim dz = . 
R�� z(�2 − z2) R�� z(�2 − z2) �C2 +C4 +C6 +C8��0 C1 +C3 +C5 +C7 ��0 

So 
⎪ ⎪ 

� sin x eiz 2 
dx = Im lim dz = . 

x(�2 − x2) R�� z(�2 − z2) �
−� C1 +C3 +C5+C7��0 

111. Show that 
⎪

⎧�i (t > 0),
� itx � e

P dx = 0 (t = 0), 
x ⎧

−� 
�

−�i (t < 0), 

and hence also that 
⎪ 

cos tx 
P dx = 0, 

x
−� 
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and 
⎪

⎧� (t > 0),
� sin tx 

dx = 0 (t = 0), 
x ⎧ 

−� 
�

−� (t < 0). 

Solution. Case 1, t > 0. For large R and small �, define the contour C = C1 + C2 + C3 + C4, 
where C1 and C3 are the real intervals [−R, −�] and [�, R], C2 is the upper half of the 
circle |z| = � with clockwise orientation, and C4 is the upper half of the circle |z| = R with 
counterclockwise orientation. 

Then 
⎪ ⎪ 

� itx itze e
P dx = lim dz. 

x R�� 
C1 +C3 

z
−� 

��0 

By Theorem 2 of classnotes, 
⎪ 

itze
lim dz = 0, 

R�� C4 
z 

and, by Theorem 4 of classnotes, 
⎪ itz itze e

lim dz = −�i Res[ , 0] = −�i. 
��0 C2 

z z 
itz 

Since e has no singularities on the upper half plane, we get 
z 

⎨ itze
dz = 0. 

C z 

This gives 
⎪ ⎪ ⎪ 

� itx itz itze e e
P dx = lim dz = − lim dz = �i. 

x R�� 
C1 +C3 

z R�� 
C2 +C4 

z
−� 

��0 ��0 

Case 2, t < 0. For large R and small �, define the contour C = C1 + C2 + C3 + C4, 
where C1 and C3 are the real intervals [−R, −�] and [�, R], C2 is the lower half of the circle 
|z| = � with counterclockwise orientation, and C4 is the lower half of the circle |z| = R with 
clockwise orientation. 

Then 
⎪ ⎪ 

� itx itze e
P dx = lim dz. 

x R�� 
C1 +C3 

z
−� 

��0 

By Theorem 2 of classnotes, 
⎪ itze

lim dz = 0, 
R�� C4 

z 

and, by Theorem 4 of classnotes, 
⎪ 

itz itze e
lim dz = �i Res[ , 0] = �i. 
��0 C2 

z z 
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itz 
Since e has no singularities in the lower half plane, we get 

z 

⎨ itze
dz = 0. 

C z 

This gives 
⎪ ⎪ ⎪ 

� itx itz itze e e
P dx = lim dz = − lim dz = −�i. 

x R�� 
C1 +C3 

z R�� 
C2 +C4 

z
−� 

��0 ��0 

1
Case 3, t = 0. Since 

x is odd, it’s clear that 
⎪ 

� 1 
P dx = 0. 

x
−� 

Combine all three cases, we get 

⎪

⎧�i (t > 0),
� itx � e

P dx = 0 (t = 0), 
x ⎧ 

−� 
�

−�i (t < 0), 

Compare the real and imaginary parts on both sides. We get 
⎪ 

cos tx 
P dx = 0, 

x
−� 

and 

⎪

⎧� (t > 0),
� sin tx 

P dx = 0 (t = 0), 
x ⎧

−� 
�

−� (t < 0). 
⎩ 

Note that the integral 
−� 

sin 
x
tx dx actually converges in all three cases. So the last equation 

above becomes 

⎪

⎧� (t > 0),
� sin tx 

dx = 0 (t = 0), 
x ⎧ 

−� 
�

−� (t < 0). 

116. Obtain the evaluation 
⎪ 

� cos ax − cos bx 
dx = �(b − a).

2x
−� 

iaz − eibz )/z2[Notice that f (z) = (e has a simple pole at the origin.] By taking a = 0 and 
b = 2, also deduce the formula 

⎪ 
� sin2 x 

dx = �. 
2x

−� 
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Solution. If we naively set cos ax = Re(eiax) and cos bx = Re(eibx) and take the Re outside 
the integral sign, then the resulting integral doesn’t make any sense as is: 

⎪ ⎪ 
� eiax − eibx� cos ax − cos bx 

I = dx =→ Re dx = �.
2 2x x

−� −� 

More precisely, I itself is finite, since the integrand in the left-hand side is well-behaved for 
all x. For example, by expanding the cosines in the integrand near z = 0, we find 

[1 − (az)2 
+ . . . + (−1)n (az)2n 

+ . . .] − [1 − (bz)2 
+ . . . + (−1)n (bz)2n 

+ . . .]cos az − cos bz 2! (2n)! 2! (2n)! 
= 

2 2z z

a2 − b2 a2n − b2n


= − + . . . + (−1)n z2(n−1) + . . . . 
2! (2n)! 

iaz ibz 
−eOn the other hand, the integrand on the right-hand side, f(z) � e
z2 , has a simple pole 

at z = 0. Indeed zf(z) reads as 

eiaz − eibz 

zf(z) = 
z 

[1 + iaz + (iaz)2 
+ . . . + (iaz)n 

+ . . .] − [1 + ibz + (ibz)2 
+ . . . + (ibz)n 

+ . . .]2! n! 2! n!= 
z 

a2 − b2 

= i(a − b) − z + . . . + in a
n − bn 

z n−1 + . . . , 
2! n! 

= 0 since a →which is analytic at z = 0 (and furthermore limz�0[zf(z)] → = b). 
Therefore, we read I = ReIp where Ip is the principal-value integral 

⎪ 
� eiax − eibx 

Ip � P dx 
2 . 

x
−� 

We calculate Ip by closing the path by a small semicircle C�+ of radius � around z = 0 in 
the upper half plane, and a large semicircle CR+ of radius R also in the upper half plane. 
The resulting closed contour does not contain any singularities of the integrand and has to 
be zero by the Cauchy integral theorem. In addition, by Theorems 4& 2 of classnotes, 

⎪ 
lim dz f(z) = −i� Rez[f(z), 0] = −i� i(a − b) = �(a − b), 

��0+ 
C�+ 

⎪ 
lim dz f(z) = 0. 

R�� CR+ 

The last equation was obtained by noticing that a > 0 and b > 0 while 1/z2 goes to 0 
uniformly in |z| = R as R � �. It follows that 

⎪ ⎪ 
Ip + lim dz f(z) + lim dz f(z) = 0 

��0+ 
C�+ 

R�� CR+ 

≡ Ip = �(b − a) ≡ I = ReIp = �(b − a).


In the special case a = 0 and b = 2, the integrand of the original integral becomes


cos ax − cos bx 1 − cos 2x 2 sin2 x 
= = .

2 2 2x x x
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Hence, the result of integration reads as 
⎪ 

� 2 sin2 x

dx = 2�, 

2
x

−� 

which agrees with the desired formula. 


