SOLUTION SET VI FOR 18.075-FALL 2004

4. SERIES SOLUTIONS OF DIFFERENTIAL EQUATIONS:SPECIAL FUNCTIONS

4.2. Tllustrative examples. .

5. Obtain the general solution of each of the following differential equations in terms of
Maclaugin series:
d
(a) 77 =2y,
d? d

Solution. (a) Try the Maclaurin series y = Y .~ ap,x™ to get

o o
Ty = E anz"tt = g an_12", a_1 =0,
n=0 n=0

d%y s >
W = Zn(n —_ 1)ang;n_2 = Z(n + 2)(7’L =+ 1>CLn+2(En.
n=2 n=0

The differential equation yields

[e.e]

> [ +2)(n+ Dapya — an1]a” =0,

n=0
which is satisfied by all x in some neighborhood of x¢ = 0. Hence, the recurrence formula
(relation) for the coefficients a,, reads

(n+2)(n+ Dapta =ap—1; a-1=0, n=0,1,23 ....
Find the coefficients explicitly for various n:
n=0: ay=0

n=1: - 2a3 = ag

n=3:

3

n=2: 4-3a4 =
5-4das = ay
6

n=4:

n=5: T -6ay=ay

. 5CL6 = as

n=6: 8 -Tag=as,....

Notice that ag and aq are independent and arbitrary, while all coefficients ao, as, as, ... a3nia - .

0.
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The corresponding power series for y(x) reads as

7 27 23t
@) = el St e e Tt B 06 . B Gt
25 26 230
tolI Tyt e G e T T 2 3)66). . [Bnr 2Bt
(b) Once again, we try the Maclaurin series y(z) Y -, a,z™ to get
dy d -
x% = Znanx", d—xg = Z(n +2)(n + Dapsoz™,
n=0 n=0
which in turn lead to the equation
o
Z[(n +2)(n+ Dapta + (n — Day]z™ =0,
n=0

satisfied by all z in some neighborhood of 2y = 0. It follows that
(n+2)(n+ Dapiea =—(n—1a,, n=0,1,23 ....
Write the ensuing coefficients explicitly:
n=0: 2a2 = ay,
n=1: 3-2a3=0-a; =0,
n=2: 4-3a4 = —as,
n=3: b-4as5 = —2a3 =0,
n=4: 6-5ag = —3ay,
n=5: 7 -6ay=—4as =0.
It follows that ag and a; are independent and arbitrary. Further, all coefficients with odd
index are zero, with the exception of a; (since the right-hand side of the equation for n = 1

vanishes).
The final Maclaurin series for y(z) reads as

Notice that the independent solution involving a; is u(x) = x.

6. For each of the following equations, obtain the most general solution which is repre-
sentable by a Maclaurin series:

2 2
(a) L4 +y =0, (b) ¥ — (z - 3)y =0,

2 2
(€) (1-32%) G +2 —y =0, (&) 2?4 — E +y=0,
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d? d
(e) (2* +2) gt — (2* = 2)g% — (z +2)y = 0.
Obtain three nonvanishing terms in each infinite series involved.

Solution. (a) With y(z) = Y7, Apa™, the recurrence formula for the coefficients A,, is
(n+2)(n+1)Anpo+ A4, =0, n=0,1,273 ....

Specifically,
A
A
A2 A()
=2: 4-34A4+ Ay = A = -2 —
n 3A4+ Ao 0= Ay 3.4 4!7
A3 A1
n=3 9 5+ A3 =0= Aj 5.4 K

It follows that

22 xt x3 z°
y(w):Ao<1—§+I—..- + A x—y‘i‘a—--- .

(b) Again, start with y(z) = > o2 j Ayz™ and zy(z) = Y o0 Ap—12", where A_; =0, to

arrive at the recurrence formula

(n+2)(n+1)An+2—An_1+3An:0; A1=0, n=0,1,2,....

Specifically,
3
n=0: 2-1A2—|—3A0:O:>A2:—ﬁ140,
A A
n=1: 3245 — Ag+ 341 =0= A3 = 203 71
Al Az Al 3A0
n 344 1+34;=0= Ay 3.4 1 3-4+8’

It follows that

Ay A A1 34
ylx) = A0+A1x——A0$ +<60 21>x3 <_1+T

3 1
= A0<1—§x2+6x3—...>+A1<x———|-—_ )

(c) With y(z) =02 Apa™, we get
2
= ZTLAn$n, 1‘2% = Zn(n — 1)Anl‘n,
n=0 0

and we find the recurrence formula

(n+2)(n+1)Apys — %(n —1)(n—2) A, = 0.
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Try different values of n:

A
-1A2—A0=0=>A2=70,

n=20: 2

n=1: 3.243—-0=0= A3 =0,

n=2: 4-3A4 =0,

n=3: 5-4A5 = A3 =0,

n==4%: 6-546 — 344, =0= Ag =0,
n=>5: 7-6A7 —2-345=0= A7 =0 etc

It follows that all coefficients A,, with n > 3 vanish! Hence,
22
y(z) = Ao 1+ 5 + Ajx.

(d) Clearly,

vy
-_— = (n + 1)An+1$n,
dx =
d?y >
xQE = Z n(n —1)A,x".
n=0

The recurrence formula is
mn—1)+1A4, =n+1)Ap+1, n=0,1,2,.....

Specifically,
n=20: AQ = Al,
Ao
n=1: A1:2A2:>A2:7a
A
n=2: 3A2:3A3:>A3:70 etc.
Hence,

22
y(z) = Ao 1—{—x—|—?+ e
(e) Clearly,
(x+2)y = ZAn_la:" +2 ZAna:", A 1=0,

n=0 n=0
d [e.e] o0
(z% — 2)% = Z(n — 1A,z =2 Z(n + 1A, 412",
n=0 n=0
(x* + w)@ = Z n(n—1)A,z" + Z nn+1)A, 12",
n=0 n=0

By putting all these terms together, the recurrence formula reads

m=2)n+DA, +(n+1)(n+2)Ap41 —nA_1=0;, A1 =0, n=0,1,2,....
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Specifically,
n=0: —-2A4p+1-247;=0= Ay = Ay,
A
n=1: —24,+2-345—Ag=0= Ay = 20 etc.
Finally,

x2
y(x) = Ao 1+x+7+ ]

4.3. Singular points of linear, second-order differential equations.

8. Locate and classify the singular points of the following differential equations:
(a) (z—=1)y" + oy =0 (z =2 0),
(b) y”+y logz +a2y =0 (z > 0),
(¢c) zy" 4+ ysinz =0,
(d ) —[1 -2y =0,
6 75 yem 220 (o 2 0).
Solution. (a) The singular points are x = 1 and x = 0. = 1 is a regular singular point
\/51) (r—1)y/z has a Taylor expansion near = 1. Since (z2- (I%)/H‘z:o
2. VT

does not exist, x e does not have a Taylor expansion near x = 0. So x = 0 is a

since (r—1)2- 0

irregular singular point.
e singular point 1s x = 0, which 1s irregular since x log x 1s not differentiable at
b) The singul int i 0, which is i lar si 1 i diff iabl
z=0.
(c) There are no singular points. (Note that S22 = Zzo:l(—l)"_l%.)
e singular points are z = 1 and « = —1. Since neither ((x — Jl—z z=1 hor
d) The singul i 1 and 1. Si ith 12 1—2%)"
((z +1)%- |1 — 22%|)"|4=_1 is well defined, both singular points are irregular.

(e) There are no singular points. (Note that cos \/z = Zfzo(—l)"(;—:)!.)

4.4. The Method of Frobenius.

11. Use the method of Frobenius to obtain the general solution of each of the following
differential equations, valid near x = 0:

(a) 2zy” + (1 — 2z)y’ ~y=0,

(b) 2%y" + zy + (2% — })y =0,

(c) my" + 2y +ay =0,

(d) z(1 —2)y” — 2y +2y = 0.

Solution. (a)Rewrite the equation as

1
y//+ _(
x
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Then we can see that Py = 1/2, P, = —1,01 = —1/2,and all other P,’s, @,’s and R,,’s are
zeros. So f(s) = s?—1s, g1(s) = —s+1/2, and gn(s) = 0if n # 1. f(s) = 0 has two roots:
s = % and s = 0. Take s = 0, then A,, = A’;{l, for all n > 1. Hence, by induction, A, = %
for all n > 0. Therefore

o n

T

Yy = A Z = A()em
“— nl

’;;_ﬁ, for all n > 1. Therefore

Now, take s = 1/2, then A,, =2

Here 2n+ 1)1 =3-5-7...- (2n+1.)
The general solution is then of the form:

. o

(b) Rewrite the equation as

y//+ ly'+ %(332 _ l
x x
Then we can see that Py = 1, Qg = —i, @2 = 1, and all other P,’s, ,’s and R,,’s are
zeros. So f(s) =s? — 1, ga(s) =1, and g,(s) = 0if n # 2. f(s) =0 has two roots: s = %
and s = —%.
For s = —% we have A, = —ﬁAn_g for all n > 2. From this, it easy to check by

—1)"

induction that Ao, = %Ao and Agpi1 = (gn +)1)!A1 for all n > 0. So, in this case,

o0
1
y = x 2 ZAnx"
n=0

_ onfé (i (_1)na}2n)+141337 (i (_1)71 x2n+1>

N[

o (2n)! o (2n + 1)!
= on_% cos T + Alx_% sin .
The general solution is then of the form
Yy = cox*% cosx + cla:*% sin z.

(c) Rewrite the equation as

The we can see that Py = 2, Q2 = 1, and all other P,’s, ,’s and R,’s are zeros. So
f(s) =5%+s, go(s) = 1, and g,(s) = 0if n # 2. f(s) = 0 has two roots: s = —1 and s = 0.



SOLUTION SET VI FOR 18.075-FALL 2004 7

D% Ay and Agpg1 =

An 2. So Agn = ((2n)! A1 for

For s = —1, we have A,, =
all n > 0. Then

1 ="
n(n—1) (2n+1)

oo
y = x ! ZAnx"
n=0

= 274 nzomx? A4 nzo (Zn)!a}2 )

= x YA;sinz + Agcosz).

The general solution is then of the form

y = " Yersina + o cos ).
(d) Rewrite the equation as
2 2z
(L-a)y" =~y + 3y = 0.

Then we can see Ry = —1, Py = —2, )1 = 2, and all other P,’s, ),,’s and R,,’s are zeros.
So f(s) = s —3s, g1(s) = —s? +3s, and g, (s) = 0 for all n > 1. f(s) has two roots: s = 3
and s = 0.

For s =0, A, f((n)) Ap 1 =A, 1 foralln >1, n+# 3. Thus, Ay = A1 = Ay, and
A3 = A4 = A5 =---. So, in this case,

[e.e]
y = 2° ZAnx”
n=0

= Ag (142 +2?) + Azz® Zm"

n=0
1— a3 x3
= A A
0T AT
The general solution is then of the form
1 x>
y = <o +a

1—2x 1—z

12. Use the method of Frobenius to obtain the general solution of each of the following
differential equations, valid near x = 0:
(a) 2%y — 2ay' + (2 — a?)y = 0,

()(90—1) xy' +y =0,
(c) ay” — ' + 4’y — 0,
(d) (1 —cosz)y” —sinzy’ +y = 0.

Solution. (a)Rewrite the equation as

2 1
y' ——y+ (2—m) = 0.
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Then we can see that Py = —2, Qo = 2,02 = —1 and all other P,’s, @,’s and R,’s are
zeros. So f(s) = s? —3s+2, ga(s) = —1, and g,(s) = 0if n # 2. f(s) = 0 has two roots:
s=1and s =2. For s =1, we have

An—Q

An = n(n —1)

for n > 2. From this, it’s easy to check by induction that Ao, = % and Agpt1 =
for all n > 0. So

00 1 . o0 1 . ‘
y =z (Ao Z (2n)!x2 + Ay Z;me2 H) = z(Apcosh (z) + A; sinh (z)).

Ay
(2n+1)!

n=0
The general solution is then of the form

y = coxcosh () + cixsinh (x).

(b) Rewrite the equation as

1 " / z? .
(1—2)y" +zy —ﬁy = 0.

Then we can see that Ry = —1, P, = 1, Q2 = —1, and all other P,’s, @,’s and R,,’s are
zeros. So f(s) = 82 — s, g1(s) = —(s — 1)(s — 2), g2(s) = s — 3, and g,(s) = 0 if n > 3.
f(s) =0 has two roots: s =0 and s = 1.
For s = 0, we have
A, = _gl(n)Anfl + g2(n) An 2 _n- 2An—1 n—3 A,
fn) n n(n—1)
Ag

o ifn>2. So

for n > 2. From this, it’s easy to check by induction that A, =

Yy = AQ (1 + Z %) + Alx = AAO(e"B — .%') + Alx = Aoex + (A1 — AQ)[I}
n=2
Hence the general solution is of the form

y = cpe’ + ciw.
(c¢) Rewrite the equation as
1 4g4
y// . _y/ + Y= 0.
x x
Then we can see that Q4 = 4, Py = —1, and all other P,’s, @,’s and R,’s are zeros. So
f(s) =52 —2s, g4(s) = 4, and g,(s) = 0 if n # 4. f(s) =0 has two roots: s =0 and s = 2.
For s =0, we have A1 = A3 =0, and A, = 4 )An 4 for all n > 4. From these, it’s

" nn—2
easy to check by induction that As, 1 =0, Ay = Ay for all

n>0. So

)) Ag, and Aypq2 = (2n+)1)

(Zn

oo _1)» oo _1)»
= Ap Z (=) 4" Ay Z ﬁafm” = Agcos (z%) + Aysin (z2).
n=0 ’ n=0 ’
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The general solution is then of the form
y = cocos (%) + ¢y sin (z2).

(d) Rewrite the equation as

> —1)" o1&t 2
(ZQ(Q(n +)2)!x2n> Y <ZQ((2n)+1)!x2 )y Ty =0

n=0 n=0
Then we can see that Qo = 2, Py, = 2((;11317 Ry, = (; +)2) for all n > 0, and all

other P,’s, @Q,’s and R,,’s are zeros. So f(s) = (s —1)(s — 2), and go,—1(s) = 0, gon(s) =
2%(5 —2n)(s —4n —3) for all n > 1. f(s) = 0 has two roots: s =1 and s = 2.
For s = 1,using the equation

f(5+n *ngSWLn n—k;

it’s easy to check by induction that Ao, = Aq for alln > 0.

So

(g +)1)|A07 and Agpq1 = (g 4_)2)1

y = x ZAnx"
n=0
— (=" o (D" o
= A — "+ A 2~ 1 gt
Oxnzo(2n+1)!x + 1937;) 2n+ 2"

00 _1) ) _1)
_ AO Z ( ( ) x2n+1 + Al 22 2( ) x2n+2
n n=0

— (2n+1)! (2n +2)!
= Agsinz + 2A;(1 — cosz).
The general solution is then of the form

y = cosinx + ¢1(1 — cosx).



