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SOLUTION SET VI FOR 18.075–FALL 2004 

4. Series Solutions of Differential Equations:Special Functions 

4.2. Illustrative examples. . 

5. Obtain the general solution of each of the following differential equations in terms of 
Maclaurin series: 

d2 y(a)	
dx2 = xy,

d2 y dy
(b)	
dx2 + x

dx − y = 0. 

nSolution. (a) Try the Maclaurin series y = � 
nx to get n=0 a

n+1 n xy = anx = an−1x , a−1 = 0, 
n=0 n=0 

d2y	
= 

�

n(n − 1)anx n−2 = (n + 2)(n + 1)an+2x n . 
dx2 

n=2	 n=0 

The differential equation yields 

[(n + 2)(n + 1)an+2 − an−1]x n = 0, 
n=0 

which is satisfied by all x in some neighborhood of x0 = 0. Hence, the recurrence formula 
(relation) for the coefficients an reads 

(n + 2)(n + 1)an+2 = an−1; a−1 = 0, n = 0, 1, 2, 3, . . . . 

Find the coefficients explicitly for various n: 

n = 0 : a2 = 0 

n = 1 : 3 2a3 = a0· 
n = 2 : 4 3a4 = a1· 
n = 3 : 5 4a5 = a2· 
n = 4 : 6 5a6 = a3· 
n = 5 : 7 6a7 = a4· 

n = 6 : 8 7a8 = a5, . . . . · 
Notice that a0 and a1 are independent and arbitrary, while all coefficients a2, a5, a8, . . . a3n+2 . . . = 
0. 

Date: October 22, 2002. 
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2 SOLUTION SET VI FOR 18.075–FALL 2004 

The corresponding power series for y(x) reads as 

4 7	 3n+1x x	 x
y(x) = a1 x + + + . . . +	 + . . . 

4 3 (3 · 4)(6 · 7) (3 · 4)(6 · 7) . . . [3n · (3n + 1)] · 
3 6	 3nx x	 x

+a0 1 + + + . . . +	 + . . . . 
2 3 (2 · 3)(5 · 6) (2 · 3)(5 · 6) . . . [(3n + 2)(3n + 3)] · 

n(b) Once again, we try the Maclaurin series y(x) � 
nx to get n=0 a

dy 
�
� d2y 

�
n x = nanx , = (n + 2)(n + 1)an+2x n ,

dx	 dx2 
n=0	 n=0 

which in turn lead to the equation 

[(n + 2)(n + 1)an+2 + (n − 1)an]x n = 0, 
n=0 

satisfied by all x in some neighborhood of x0 = 0. It follows that 

(n + 2)(n + 1)an+2 = −(n − 1)an, n = 0, 1, 2, 3, . . . . 

Write the ensuing coefficients explicitly: 

n = 0 : 2a2 = a0, 

n = 1 : 3 2a3 = 0 a1 = 0,· · 
n = 2 : 4 3a4 = −a2,· 

n = 3 : 5 4a5 = −2a3 = 0,· 
n = 4 : 6 5a6 = −3a4,· 

n = 5 : 7 6a7 = −4a5 = 0.· 
It follows that a0 and a1 are independent and arbitrary. Further, all coefficients with odd 
index are zero, with the exception of a1 (since the right-hand side of the equation for n = 1 
vanishes). 

The final Maclaurin series for y(x) reads as 

 

x2 x4 1 3x6 1 3 5x8 

y(x) = a0 1 + + 
· 
6! 

− 
· · 

+ . . . 
2! 

− 
4!	 8! 

+(−1)n 1 · 3 · . . . (2n − 1)x2n+2 

+ . . . + a1x. 
(2n)! 

Notice that the independent solution involving a1 is u(x) = x. 

6. For each of the following equations, obtain the most general solution which is repre­
sentable by a Maclaurin series: 

d2 y	 d2 y(a)	
dx2 + y = 0, (b) 

dx2 − (x − 3)y = 0, 
� 

1 d2 y dy (d) x2 d2 y dy(c) 1 − 2 x
2
� 

dx2 + x
dx − y = 0,	

dx2 − 
dx + y = 0, 



� 


 � 
 � 

� � 


 � 
 � 


 � 
 � 

� 

�
� 

3 SOLUTION SET VI FOR 18.075–FALL 2004 

y 2 − 2) dy(e) (x2 + x) d
2 

dx − (x + 2)y = 0.
dx2 − (x

Obtain three nonvanishing terms in each infinite series involved. 

Solution. (a) With y(x) = � Anxn, the recurrence formula for the coefficients An is n=0 

(n + 2)(n + 1)An+2 + An = 0, n = 0, 1, 2, 3, . . . . 

Specifically, 
A0 

n = 0 : 2 1A2 + A0 = 0 � A2 = ,· − 
2 1· 
A1 

n = 1 : 3 2A3 + A1 = 0 � A3 = ,· − 
2 3· 

A2 A0 
n = 2 : 4 3A4 + A2 = 0 � A4 = = ,· − 

3 4 4!· 
A3 A1 

n = 3 : 5 4A5 + A3 = 0 � A5 = = , . . . · − 
5 4 5!· 

It follows that 
2 4 3 5x x x x

y(x) = A0 1 − + 
4! 

− . . . + A1 + 
5! 

− . . . .x −
2! 3! 

(b) Again, start with y(x) = � Anxn and xy(x) = � An−1x
n, where A−1 = 0, to n=0 n=0 

arrive at the recurrence formula 

(n + 2)(n + 1)An+2 − An−1 + 3An = 0; A−1 = 0, n = 0, 1, 2, . . . . 

Specifically, 

3 
n = 0 : 2 1A2 + 3A0 = 0 � A2 = A0,· − 

1 2· 
A0 A1 

n = 1 : 3 2A3 − A0 + 3A1 = 0 � A3 = ,· 
2 3 

− 
2· 

A1 A2 A1 3A0 
n = 2 : 4 3A4 − A1 + 3A2 = 0 � A4 = = + , . . . . · 

3 4 
− 

4 3 4 8· · 
It follows that 

A0 A1 3 A1 3A0 4 y(x) = A0 + A1x − 
3 
A0x 2 + x + + x + . . . 

2 6 
− 

2 12 8 

1 3 x x4 

= A0 1 − 
3 
x 2 + x − . . . + A1 x − 

3 

+ 
12 

− . . . . 
2 6 2 

n(c) With y(x) = � Anx , we get n=0 

x
dy 

= 
� 

nAnx n , x 2 d
2y 

= 
�

n(n − 1)Anx n ,
dx dx2 

n=0 n=0 

and we find the recurrence formula 
1 

(n + 2)(n + 1)An+2 − (n − 1)(n − 2)An = 0. 
2 
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4 SOLUTION SET VI FOR 18.075–FALL 2004 

Try different values of n: 

A0 
n = 0 : 2 1A2 − A0 = 0 � A2 = ,· 

2 
n = 1 : 3 2A3 − 0 = 0 � A3 = 0,· 
n = 2 : 4 3A4 = 0,· 
n = 3 : 5 4A5 = A3 = 0,· 
n = 4 : 6 5A6 − 3A4 = 0 � A6 = 0,· 
n = 5 : 7 6A7 − 2 3A5 = 0 � A7 = 0 etc.· · 

It follows that all coefficients An with n � 3 vanish! Hence, 

2x
y(x) = A0 1 + + A1x. 

2 

(d) Clearly, 

dy 
�

= (n + 1)An+1x n ,
dx 

n=0 

2 d
2y 

�

x = n(n − 1)Anx n . 
dx2 

n=0 

The recurrence formula is 

[n(n − 1) + 1]An = (n + 1)An+1, n = 0, 1, 2, . . . .. 

Specifically, 
n = 0 : A0 = A1, 

A0 
n = 1 : A1 = 2A2 � A2 = ,

2 
A0 

n = 2 : 3A2 = 3A3 � A3 = etc. 
2 

Hence, 
2x

y(x) = A0 1 + x + + . . . . 
2 

(e) Clearly, 

(x + 2)y = An−1x n + 2 Anx n , A−1 = 0, 
n=0 n=0 

dy 
� �

(x 2 − 2) = (n − 1)An−1x n − 2 (n + 1)An+1x n ,
dx 

n=0 n=0 

(x 2 + x) 
d2y 

= n(n − 1)Anx n + n(n + 1)An+1x n . 
dx2 

n=0 n=0 

By putting all these terms together, the recurrence formula reads 

(n − 2)(n + 1)An + (n + 1)(n + 2)An+1 − nAn−1 = 0; A−1 = 0, n = 0, 1, 2, . . . . 
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Specifically, 
n = 0 : −2A0 + 1 2A1 = 0 � A0 = A1,· 

A0 
n = 1 : −2A1 + 2 3A2 − A0 = 0 � A2 = etc.· 

2 
Finally, 

2x
y(x) = A0 1 + x + + . . . . 

2 

4.3. Singular points of linear, second-order differential equations. . 

8. Locate and classify the singular points of the following differential equations: 
(a) (x − 1)y�� + 

�
xy = 0 (x � 0), 

(b) y�� + y� log x + xy = 0 (x � 0), 
(c) xy�� + y sin x = 0, 
(d) y�� − 1 − x2 y = 0, |
(e) y�� + y

|
cos 

�
x = 0 (x � 0). 

Solution. (a) The singular points are x = 1 and x = 0. x = 1 is a regular singular point �
x 2 

�
xsince (x − 1)2 (x−1) = (x − 1)

�
x has a Taylor expansion near x = 1. Since (x (x−1) )

���
x=0· · |

�
xdoes not exist, x2

(x−1) does not have a Taylor expansion near x = 0. So x = 0 is a · 
irregular singular point. 

(b) The singular point is x = 0, which is irregular since x log x is not differentiable at 
x = 0. 

x(c) There are no singular points. (Note that sin x = � 2n−2 

x n=1(−1)n−1 
(2n−1)! .) 

(d) The singular points are x = 1 and x = −1. Since neither ((x − 1)2 1 − x2 )�� x=1 nor· | | |
((x + 1)2 1 − x2 )�� x=−1 is well defined, both singular points are irregular. 

� n 
· | | |

n=0(−1)n 
(2
x
n)! .)(e) There are no singular points. (Note that cos 

�
x = � 

4.4. The Method of Frobenius. . 

11. Use the method of Frobenius to obtain the general solution of each of the following 
differential equations, valid near x = 0: 

(a) 2xy�� + (1 − 2x)y� − y = 0, 
2 1(b) x2y�� + xy + (x 4 )y = 0, −

(c) xy�� + 2y� + xy = 0, 
(d) x(1 − x)y�� − 2y� + 2y = 0. 

Solution. (a)Rewrite the equation as 

1 1 1 x 
y�� + (

2 
− x)y� + )y = 0.

2 (−x x 2 
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Then we can see that P0 = 1/2, P1 = −1,Q1 = −1/2,and all other Pn’s, Qn’s and Rn’s are 
1zeros. So f (s) = s2 s, g1(s) = −s + 1/2, and gn(s) = 0 if n = 1. f (s) = 0 has two roots: 2− ≥

A0s = 1 and s = 0. Take s = 0, then An = An−1 , for all n � 1. Hence, by induction, An = 2 n n! 
for all n � 0. Therefore 

n 
� x

= A0e x y = A0 
n! 

n=1 
An−1Now, take s = 1/2, then An = 2 2n+1 , for all n � 1. Therefore 

Anx n 

n=0 

y = x


= x


1

2 

1

2 

� 2n 

A0 x n . 
(2n + 1)!! 

n=0 

Here (2n + 1)!! = 3 · 5 7... · (2n + 1.)· 
The general solution is then of the form: 

� 2n 
x + C2x 

1

2 n y(x) = C1e x . 
(2n + 1)!! 

n=0 

(b) Rewrite the equation as 

1 1 1 
y�� + 

x
y� + 

x2 (x 2 − 
4
)y = 0. 

1Then we can see that P0 = 1, Q0 = 4 , Q2 = 1, and all other Pn’s, Qn’s and Rn’s are 
1 

− 
zeros. So f (s) = s2

4 , g2(s) = 1, and gn(s) = 0 if n = 2. f (s) = 0 has two roots: s = 1 
2 

1 
− ≥

and s = 2 . 
=For s 
− 

1 we have An = 
n(n

1 
−1) An−2 for all n � 2. From this, it easy to check by 2 −− 

(−1)n 
induction that A2n = (−1)n 

A0 and A2n+1 = (2n+1)! A1 for all n � 0. So, in this case, (2n)! 

nAnxx− 1
2y = 

n=0 

(−1)n (−1)n 
1

2 
1

2 2n 2n+1A0x
− ) + A1x

−( ( )= x x 
(2n)! (2n + 1)! 

n=0 n=0 
1

2 
1

2A0x
− cos x + A1x

− sin x.
= 

The general solution is then of the form


y = 

(c) Rewrite the equation as 

c0x
− 1

2 cos x + c1x
− 1

2 sin x. 

2 x2 

y�� + y� + 
2 y = 0. 

x x

The we can see that P0 = 2, Q2 = 1, and all other Pn’s, Qn’s and Rn’s are zeros. So 
f (s) = s2 + s, g2(s) = 1, and gn(s) = 0 if n = 2. f (s) = 0 has two roots: s = −1 and s = 0. ≥
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For s = −1, we have An = 
n(n

1 
−1) An−2. So A2n = (−1)n 

A0 and A2n+1 = (−1)n 
A1 for(2n)! (2n+1)!−

all n � 0. Then 

Anx n y = x−1 

n=0 
�

� (−1)n 
2n+1 2n= x−1(A1 

� (−1)n 

x + A0 

�

x )
(2n + 1)! (2n)!

n=0 n=0


= x−1(A1 sin x + A0 cos x).


The general solution is then of the form


y = x−1(c1 sin x + c0 cos x).


(d) Rewrite the equation as


2 2x

(1 − x)y�� − y� + 

2 y = 0. 
x x

Then we can see R1 = −1, P0 = −2, Q1 = 2, and all other Pn’s, Qn’s and Rn’s are zeros. 
So f (s) = s2 − 3s, g1(s) = −s2 + 3s, and gn(s) = 0 for all n > 1. f (s) has two roots: s = 3 
and s = 0. 

For s = 0, An = g1(n) An−1 = An−1 for all n � 1, n = 3. Thus, A2 = A1 = A0, and 
f (n)− ≥

A3 = A4 = A5 = . So, in this case, · · ·

y = x 0 Anx n 

n=0 

= A0 (1 + x + x 2) + A3x 3 
�
� 

x n 

n=0 

= A0 
1 − x3 

1 − x 
+ A3 

x3 

1 − x 
. 

The general solution is then of the form 

1 x3 

y = c0 + c1 . 
1 − x 1 − x 

12. Use the method of Frobenius to obtain the general solution of each of the following 
differential equations, valid near x = 0: 

(a) x2y�� − 2xy� + (2 − x2)y = 0, 
(b) (x − 1)y�� − xy� + y = 0, 
(c) xy�� − y� + 4x3y = 0, 
(d) (1 − cos x)y�� − sin xy� + y = 0. 

Solution. (a)Rewrite the equation as 

2 
y�� − y� +

1 
2 (2 − x 2)y = 0. 

x x
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Then we can see that P0 = −2, Q0 = 2,Q2 = −1 and all other Pn’s, Qn’s and Rn’s are 
zeros. So f (s) = s2 − 3s + 2, g2(s) = −1, and gn(s) = 0 if n = 2. f (s) = 0 has two roots: ≥
s = 1 and s = 2. For s = 1, we have 

An−2
An = 

n(n − 1) 

A1for n � 2. From this, it’s easy to check by induction that A2n = (2
A
n
0 
)! and A2n+1 = (2n+1)! 

for all n � 0. So 

� 1 2n+1 y = x A0 

�
1 

x 2n + A1 x = x(A0 cosh (x) + A1 sinh (x)). 
(2n)! (2n + 1)! 

n=0 n=0 

The general solution is then of the form 

y = c0x cosh (x) + c1x sinh (x). 

(b) Rewrite the equation as 
2x

(1 − x)y�� + xy� 
2 y = 0.− 

x

Then we can see that R1 = −1, P2 = 1, Q2 = −1, and all other Pn’s, Qn’s and Rn’s are 
zeros. So f (s) = s2 − s, g1(s) = −(s − 1)(s − 2), g2(s) = s − 3, and gn(s) = 0 if n � 3. 
f (s) = 0 has two roots: s = 0 and s = 1. 

For s = 0, we have 

n − 3 
An = 

g1(n)An−1 + g2(n)An−2 
= 

n − 2 − 
f (n) n

An−1 − 
n(n − 1) 

An−2 

for n � 2. From this, it’s easy to check by induction that An = A0 if n � 2. So 
n! 

n 
� x

y = A0 1 + + A1x = A0(e x − x) + A1x = A0e x + (A1 − A0)x. 
n! 

n=2 

Hence the general solution is of the form 

x y = c0e + c1x. 

(c) Rewrite the equation as 

1 4x4 

y�� − y� + y = 0.
2x x

Then we can see that Q4 = 4, P0 = −1, and all other Pn’s, Qn’s and Rn’s are zeros. So 
f (s) = s2 − 2s, g4(s) = 4, and gn(s) = 0 if n = 4. f (s) = 0 has two roots: s = 0 and s = 2. ≥

4For s = 0, we have A1 = A3 = 0, and An = 
n(n−2) An−4 for all n � 4. From these, it’s − 

(−1)n 
easy to check by induction that A2n+1 = 0, A4n = (−1)n 

A0, and A4n+2 = (2n+1)! A2 for all (2n)! 
n � 0. So 

� (−1)n 
� (−1)n 

4n+2 2y = A0 x 4n + A2 x = A0 cos (x 2) + A2 sin (x ). 
(2n)! (2n + 1)! 

n=0 n=0 
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The general solution is then of the form 
2y = c0 cos (x 2) + c1 sin (x ). 

(d) Rewrite the equation as 
�

� (−1)n+1 
� (−1)n 1 

�
2 
2 y = 0. 2n2 x 2n y�� + 2 x y� + 

(2n + 2)! x (2n + 1)! x
n=0 n=0 

Then we can see that Q0 = 2, P2n = 2 (−1)n+1 
2 (−1)n 

for all n � 0, and all (2n+1)! , R2n = (2n+2)! 

other Pn’s, Qn’s and Rn’s are zeros. So f (s) = (s − 1)(s − 2), and g2n−1(s) = 0, g2n(s) = 
2 (−1)n 

(2n+2)! (s − 2n)(s − 4n − 3) for all n � 1. f (s) = 0 has two roots: s = 1 and s = 2.

For s = 1,using the equation


n 

f (s + n)An = gk (s + n)An−k,− 
k=1 

(−1)n 
it’s easy to check by induction that A2n = (2n+1)! A0, and A2n+1 = 2 (−1)n 

A1 for all n � 0.(2n+2)! 
So 

y = x Anx n


n=0


� (−1)n 
� (−1)n 

2n = A0x x + A1x 2 x 2n+1 

(2n + 1)! (2n + 2)! 
n=0 n=0 

� (−1)n 
� (−1)n 

2n+1 = A0 x + A1 2 x 2n+2 

(2n + 1)! (2n + 2)! 
n=0 n=0


= A0 sin x + 2A1(1 − cos x).


The general solution is then of the form


y = c0 sin x + c1(1 − cos x).



