SOLUTION SET VIII FOR 18.075-FALL 2002

- 5. Boundary-Value Problems and Characteristic-Function Representations 5.1. Introduction.
- 1. Show that the boundary-value problem $\frac{d^2y}{dx^2} k^2y = 0$, y(0) = y(l) = 0 cannot have a nontrivial solution for real values of k.

Solution. Let y=y(x) be a solution, i.e., $\begin{cases} y''(x)=k^2y(x) \\ y(0)=y(l)=0 \end{cases}$. We need to show that, if k is real, then y(x)=0 for all x in [0,l].

If k=0, then $y(x)=c_1x+c_0$ and clearly, y(0)=y(l)=0 implies $c_1=c_0=0$. Hence

$$y(x) = 0 \text{ for } x \text{ in } [0, l].$$

In the case that $k \neq 0$, the general solution is

$$y(x) = c_1 \sinh(kx) + c_0 \cosh(kx).$$

The condition y(0) = 0 gives $c_0 = 0$. The condition y(l) = 0 gives

$$c_1 \sinh(kl) = 0.$$

For nontrivial solutions we must impose $c_1 \neq 0$. Hence, the only possibility of nontrivial solutions is when

$$\sinh(kl) = 0.$$

But the zeros of $\sinh(z) = 0$ are $z = in\pi$, n: integer, i.e., z has to be 0 or pure imaginary! For z = kl = 0 we get k = 0 which is not acceptable (since $k \neq 0$ by assumption). The other choise of $z = kl = in\pi$ is not acceptable either because k is taken to be real.

It follows that there are no nontrivial solutions of the given boundary-value problem for real k.

2. Determine those values of k for which the partial differential equation $\frac{\partial^2 T}{\partial x^2} + \frac{\partial^2 T}{\partial y^2} = 0$ possesses nontrivial solutions of the form $T(x,y) = f(x) \sinh(ky)$ which vanish when x = 0 and when x = l.

Solution. Let T be of the form $T(x,y) = f(x)\sinh(ky)$. Then,

$$\frac{\partial^2 T}{\partial x^2} + \frac{\partial^2 T}{\partial y^2} = (f''(x) + k^2 f(x)) \sinh(ky).$$

Date: November 25, 2002

So, if $T(x,y) = f(x) \sinh(ky)$ is a solution with the required properties, then f(x) satisfies

(1)
$$\begin{cases} f''(x) + k^2 f(x) = 0 \\ f(0) = f(l) = 0 \end{cases}$$

and $f(x) \neq 0$ for some x in [0, l].

If k = 0, then $f(x) = c_1x + c_2$, and f(0) = f(l) = 0 implies $c_1 = c_2 = 0$. So $f(x) \equiv 0$. This shows that the value k = 0 is not acceptable.

If $k \neq 0$, then $f(x) = c_1 \cos(kx) + c_2 \sin(kx)$. So f(0) = f(l) = 0 implies $c_1 = 0$ and $c_2 \sin(kl) = 0$. Since $f(x) \neq 0$, we must have $c_2 \neq 0$, and hence $kl = m\pi$ for nonzero integer m. So k is determined to be $k = \frac{m\pi}{l}$ where $m = 1, 2, 3 \dots$

m. So k is determined to be $k = \frac{m\pi}{l}$ where $m = 1, 2, 3 \dots$ For any such m, $f(x) = \sin(\frac{m\pi}{l}x)$. Then f(x) cannot vanish identically and satisfies (1). So

$$T(x,y) = \sin\left(\frac{m\pi x}{l}\right) \sinh\left(\frac{m\pi}{l}y\right)$$

is a solution with the required properties. This shows that the set $\{k = \frac{m\pi}{l} \mid m = 1, 2, 3, \ldots\}$ is the set of all characteristic values (eigenvalues) of the given problem.

3. Show that the equation $\frac{d^2y}{dx^2} + \lambda x^2y = 0$ can possess a nontrivial solution which vanishes at x = 0 and at x = 1 only if λ is such that $J_{1/4}(\frac{\sqrt{\lambda}}{2}x^2) = 0$ and that, corresponding to such a characteristic number λ_k , any multiple of the function $\varphi_k(x) = \sqrt{x}J_{\frac{1}{4}}(\frac{\sqrt{\lambda_k}}{2}x^2)$ is a solution with the required properties.

Solution. Rewrite the equation as

$$x^2 \frac{d^2 y}{dx^2} + \lambda x^4 y = 0.$$

If $\lambda = 0$, then $y(x) = c_1 x + c_0$. Application of the given boundary conditions then gives $c_0 = c_1 = 0$, which is the trivial solution. So, the value $\lambda = 0$ is not admissible.

Therefore, consider $\lambda \neq 0$. According to the theory of **Sec. 4.10**, let $Y = \frac{y}{\sqrt{x}}$, $X = \frac{\sqrt{\lambda}}{2}x^2$. Then the given ODE transforms into the Bessel equation

$$X^{2}\frac{d^{2}Y}{dX^{2}} + X\frac{dY}{dX} + (X^{2} - \frac{1}{16})Y = 0.$$

Hence, $Y = Z_{\frac{1}{4}}(X)$, i.e., the general solution is

$$y = \sqrt{x} \left[C_1 J_{\frac{1}{4}}(\frac{\sqrt{\lambda}}{2}x^2) + C_2 J_{-\frac{1}{4}}(\frac{\sqrt{\lambda}}{2}x^2) \right],$$

where C_1 and C_2 are arbitrary constants.

If there is a non-trivial solution such that y(0) = y(1) = 0, then there exist $(C_1, C_2) \neq (0, 0)$ such that

(2)
$$\lim_{x \to 0} \sqrt{x} \left[C_1 J_{\frac{1}{4}} (\frac{\sqrt{\lambda}}{2} x^2) + C_2 J_{-\frac{1}{4}} (\frac{\sqrt{\lambda}}{2} x^2) \right] = 0$$

and

(3)
$$\lim_{x \to 1} \sqrt{x} \left[C_1 J_{\frac{1}{4}}(\frac{\sqrt{\lambda}}{2}x^2) + C_2 J_{-\frac{1}{4}}(\frac{\sqrt{\lambda}}{2}x^2)) \right] = C_1 J_{\frac{1}{4}}(\frac{\sqrt{\lambda}}{2}) + C_2 J_{-\frac{1}{4}}(\frac{\sqrt{\lambda}}{2}) = 0.$$

From the Frobenius series for the Bessel function, we get the limiting behavior $(p \neq \text{integer})$

$$J_p(x) \sim \frac{1}{2^p \Gamma(1+p)} x^p, \quad J_{-p}(x) \sim \frac{2^p}{\Gamma(1-p)} x^{-p}, \quad x \to 0,$$

where $\Gamma(z)$ is the Gamma function. It follows that

$$\lim_{x \to 0} \sqrt{x} J_{\frac{1}{4}}(\frac{\sqrt{\lambda}}{2}x^2) = 0,$$

while

$$\lim_{x\to 0} \sqrt{x} J_{-\frac{1}{4}}(\frac{\sqrt{\lambda}}{2}x^2) = \frac{\sqrt{2}}{\Gamma(\frac{3}{4})}\lambda^{-\frac{1}{8}}.$$

This last term contributes a nonzero value to the left-hand side of (2) <u>unless</u> we eliminate it by <u>choosing $C_2 = 0$ </u>. So (2) dictates that $C_2 = 0$. Then $C_1 \neq 0$, and (3) implies $J_{\frac{1}{4}}(\frac{\sqrt{\lambda}}{2}) = 0$. Thus, if the given boundary-value problem has a nontrivial solution, then $\lambda \neq 0$ and

Thus, if the given boundary-value problem has a nontrivial solution, then $\lambda \neq 0$ and $J_{\frac{1}{4}}(\frac{\sqrt{\lambda}}{2}) = 0$.

If $J_{\frac{1}{4}}(\frac{\sqrt{\lambda}}{2}) = 0$, from the argument above, we see that $y = C\sqrt{x}J_{\frac{1}{4}}(\frac{\sqrt{\lambda}}{2}x^2)$ is a solution for the equation for any C, and it clearly satisfies the given boundary conditions since $J_{\frac{1}{4}}(0) = J_{\frac{1}{4}}(\frac{\sqrt{\lambda}}{2}) = 0$.

Now we conclude that the given boundary-value problem has a non-trivial solution if $J_{\frac{1}{4}}(\frac{\sqrt{\lambda}}{2}) = 0$ and $\lambda \neq 0$, in which case, any multiple of $\sqrt{x}J_{\frac{1}{4}}(\frac{\sqrt{\lambda}}{2}x^2)$ is a solution of the given boundary-value problem.

4. Show that the equation $x\frac{d^2y}{dx^2} + \frac{dy}{dx} + \lambda xy = 0$ can possess a nontrivial solution which is finite at x = 0 and which vanishes when x = a only if λ is such that $J_0(\sqrt{\lambda} \cdot a) = 0$, and obtain the form of the solution in this case.

Solution. Let $X = \sqrt{\lambda} \cdot x$, then the given ODE becomes

$$X^{2}\frac{d^{2}y}{dX^{2}} + \frac{dy}{dX} + X^{2}y = 0.$$

So the general solution of the given equation is

$$y = Z_0(X) = Z_0(\sqrt{\lambda} \cdot x) = C_1 J_0(\sqrt{\lambda} \cdot x) + C_2 Y_0(\sqrt{\lambda} \cdot x),$$

where C_1 and C_2 are as yet arbitrary constants.

Then the given boundary-value problem, i.e.,

(4)
$$\begin{cases} x\frac{d^2y}{dx^2} + \frac{dy}{dx} + \lambda xy = 0\\ y(0) : \text{ finite}\\ y(a) = 0 \end{cases}$$

has a non-trivial solution only if there exists $(C_1, C_2) \neq (0, 0)$, such that $\lim_{x\to 0} (C_1 J_0(\sqrt{\lambda} \cdot x) + C_2 Y_0(\sqrt{\lambda} \cdot x))$ is a finite number and $C_1 J_0(\sqrt{\lambda} \cdot a) + C_2 Y_0(\sqrt{\lambda} \cdot a) = 0$. But $\lim_{x\to 0} J_0(\sqrt{\lambda} \cdot x) = J_0(0) = 1$ and $\lim_{x\to 0} Y_0(\sqrt{\lambda} \cdot x) = -\infty$. So $\lim_{x\to 0} (C_1 J_0(\sqrt{\lambda} \cdot x) + C_2 Y_0(\sqrt{\lambda} \cdot x))$ is a finite number only if we eliminate the Y_0 term by choosing $Y_0(0) = 0$.

In this case, we must have $C_1 \neq 0$, and hence $J_0(\sqrt{\lambda} \cdot a) = 0$. Now, we conclude that (4) has a nontrivial solution only if $J_0(\sqrt{\lambda} \cdot a) = 0$, and in this case, the argument above shows that the solutions of (4) are of the form $y(x) = CJ_0(\sqrt{\lambda} \cdot x)$, where C is arbitrary.