Justify your answers. Cross out what is not meant to be part of your final answer. Total number of points: 50

I. (5 pts) Find all solutions of the equation

$$z^{4/3} = 1 + i$$
.

II. (Total 10 pts)

- 1. (3 pts) Can the function v(x,y) = 4xy + x + y be the imaginary part of an analytic function?
- 2. (5 pts) Determine all the functions u(x,y) such that u(x,y)+iv(x,y) is analytic.
- 3. (2 pts) Find f(z) such that

$$f(z) = u(x, y) + iv(x, y).$$

III. (5 pts) Compute the line integral

$$\int_{C} \frac{(z^2 - 2)}{z^3} dz$$

where C is the left half–circle joining -i and i.

IV. (Total 15 pts) Let

$$f(z) = \frac{z}{(1-z)(z+3)}.$$

1. (3 pts) Write f(z) as a sum of fractions, i.e.,

$$f(z) = \frac{A}{z-1} + \frac{B}{z+3};$$

- 2. (2 pts) Find the singularities of f(z) and classify them;
- 3. (3 pts) Explain whether it is possible to expand f(z) in Laurent (or Taylor) power series of:
 - (i) z + 2, that converges in the region 1 < |z + 2| < 4?
 - (ii) z + 2, that converges in the region 3 < |z + 2|?
 - (iii) z + 2, that converges in the region 1 < |z + 2| < 3?

- 4. (7 pts) Write the Laurent series expansion of f(z) in |z-1| < 2 as a power series of (z-1).
- V. (Total 8 pts)
 - 1. (5 pts) Let

$$f(z) = \frac{1}{(z^2 - z - 2)^2}.$$

Find the singularities of f(z), classify them, and compute the residues of f(z) at those singular points.

- 2. (3 pts) Compute the integral of f(z) along the circles of center 0 and radii 1/4, 5/4, and 4, respectively.
- VI. (Total 7 pts)
- 1. (2 pts) Show that the function $f(z) = \cos z^{1/2}$ is analytic at z = 0.
- 2. (5 pts) Show that the function

$$f(z) = \frac{\cos z - 1}{\sinh z - z}$$

has a simple pole at the origin.