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1 Quadratic Family: Qc(x) = x2 + c 

We have already begun to investigate the behavior of this family of functions, particularly in the 
first lab we did. For many values of c, the behavior of the function is not particularly interesting, 
but we are able to analyze the conditions leading to any particular type of behavior. Our concern 
in this chapter and this lecture will be other values of c, particularly those for c ≤ −2. The fixed 
points of the quadratic map for an arbitrary value of c are given by the solutions to Qc(x) = x, 

2 1that is x − x + c = 0 = ⇒ p± = 2(1 ±
√

1− 4c). Using this and the first derivative Qc
� (x) = 2x, we 

know the following things about the quadratic map: 

1. For c > 1/4, all orbits go to infinity. For c = 1/4, Qc has a single neutral fixed point at 1/2, 
for this is where the discriminant is zero. 

2. When c < 1/4, the graph intersects the line y = x in two places, and we have two fixed points 
given as above, p+ and p−. p+ is always repelling since Qc

� (p+) = 1+
√

1− 4c > 1 for c < 1/4, 
but since Qc

� (p−) = 1−
√

1− 4c, we have to determine where Qc
� (p−) has magnitude greater 

than 1 and less than 1. A simple analysis shows that |Q�
c < 1 for −3/4 < c < 1/4, |Q�

c = 1| |
for c = −3/4, and |Q�

c > 1 for c < −3/4, so these ranges lead to an attracting, neutral, and |
repelling p− respectively. This is a basic bifurcation. 

We are going to concern ourselves with what happens when c gets smaller, particularly when 
the minimum of Qc reaches the line y = −2 and goes below it. We investigated in Experiment 3.6 
the behavior for c = −2 and some c < −2, but now we are going to establish a more analytic basis 
for what we’re talking about. 
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Figure 1: y = x2 − 2 (horizontal lines added) 

1.1 Case 1: c = −2 

From experimental observations Q−2 behaved chaotically for the essentially all of the seeds we 
picked for orbits. One of the very obvious things is that when we choose a seed that is not between 
the fixed points, we have an orbit that tends to infinity very quickly, since the fixed points are 
repelling as above. When x0 ∈ [−2, 2] the orbit is confined to the 4­by­4 box shown above, which 
can be seen by graphical intuition, in addition to drawing orbit diagrams. It turns out that the 
function’s behavior is not completely chaotic, and to analyze its characteristics we note some of the 
mapping properties of Q−2 and its iterates. 
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Firstly, as we see from the graph of Q−2, the function maps both [−2, 0] and [0, 2] onto [−2, 2], 
so that for each x ∈ [−2, 2], there are two points y in the whole interval for which Q−2(y) = x. 
Similarly, since the image of [0, 2] under Q−2 is [−2, 2], the second iterate produces two images 
of [−2, 2] from [0, 2], and similarly for [−2, 0] under the second iterate. This follows also from 
composition of functions, since Q2 

−2 is really Q ◦Q. Continuing with this logic, we note that there 
will be 2n disjoint intervals of [−2, 2] which get mapped to [−2, 2] by Qn = −2 Q ◦ Q ◦ · · · ◦ Q (n 
times). What is really crucial here is that the line y = x will cross the graph of Qn 2n times! 
The important question now is, what do the fixed points of Qn 

−2 tell us? We know this: they are 
n­cycles. 

The really fascinating part of this development is that we have shown that a seemingly chaotic 
function has quite a lot of periodic points, which we can find and graph. For example Q2 = x−2(x)
leads to two 1­cycles we already know (1­cycles are 2­cycles of course), and two new 2­cycles, 

1 x = 2(−1 ±
√

5). The following graph gives you a picture of the 8 periodic points we can gather 
from the 3rd iterate. 

-2 -1 1 2

-2

-1

1

2

Figure 2: y = Q3 
−2(x) 

1.2 Case 2: c < −2 

As we have noted, when an orbit leaves the interval defined by the fixed points of Qc(x), the 
orbit tends to infinity. When c < −2, this seems to always be the case, as in our experimentations. 
But we are going to examine more closely the conditions under which an orbit leaves the interval 
[−2, 2]. When c < −2, the minimum of Qc dips below the line y = 2, leaving the 2x2 “box” and 
tending to infinity. We want to identify which intervals in [0, 1] will have an orbit which finds it 
way outside of the 2x2 box. There will be an initial interval corresponding to the points in which 
Qc intersects y = −2. Call this interval A1. For each x ∈ A1 (and in the whole interval for that 
matter), Q−1(x) consists of two points. Thus, if we define A2 to be the intervals which hit A1 after c 

1 iterate, we note that A2 contains two intervals. At each step, the next Ak will have twice the 
number of intervals as Ak−1, since each interval in Ak−1 has two preimages. 

The result of all this is to take 

∞
Λ = [−2, 2] − Ak. 

1 

These are the points of [0, 1] that stay in the interval for every iterate. This reduced set contains 
some points since the fixed points don’t go anywhere. We note that at each step the length of 
intervals removed is going to be decreasing. The idea behind this construction is what leads to the 
idea of a Cantor set. 
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2 Cantor Sets 

For many undergraduates, the Cantor “middle­thirds” set is the first, let us say, interesting set 
they see constructed. With respect to chaos theory, it is a good example of a simple fractal. It also 
lends itself to some interesting counterexamples in measure theory, among other things. 

The construction is pretty easy to visualize. First, we start off with the closed interval [0, 1] and 
2remove the open interval (1 

3 , 3). For each remaining interval in the set, remove the open middle 
third of it. We continue to do this ad infinitum, step by step, ending up with a set C. Making a 
drawing is really the best way to visualize it. 

2.1 Ternary Expansions 

In order to discuss the Cantor set, we must briefly introduce ternary expansions. These are 
analogous to binary and decimal expansions, but as one might guess, we work in base 3 versus base 
2 or 10. For a ternary number 0.a1a2 . . . , this is equivalent to: 

∞
ai 

3i 
. 

i=1 

We will present here a very useful division algorithm for determining expansions in alternate 
bases. It is especially useful for working out expansions very quickly. Like any algorithm, this one 
has theoretical justification which we will present as well. It is this: 

1. Write the numerator of the rational x you’re finding the ternary expansion of on the first line, 
and a period to its right to designate the start of the ternary expansion. 

2. General step: Multiply the number on the previous row by 3, and subtract the largest a b· 
from it, where b is the denominator of x. This a is the ith ternary place. 

3. Continue in this way until a 0 is reached, or the number being multiplied repeats. 

This is best elucidated by example. 
Example: x = 31/121


31/121

31 . 
93 0 
279 2 279 − 2 121 = 37· 
111 0 
333 2 333 − 2 121 = 91· 
273 2 273 − 2 121 = 31· 
93 0 repitend 

So the conclusion is that 31/121 = .02022. The justification for this is as follows. If we want to 
know how many times 1/3 goes into a/b, then 

a n 3a nb 3a − nb 
= . 

b 
− 

3 
=

3b 
− 

3b 3b 

We choose the largest n (which could easily be 0) for which 3a− nb is still nonnegative. We proceed 
with the new positive rational numbers created by this process. For the general step, determining 
how many times 1/3k goes into a/3k−1b, then as before: 

a n 3a − nb 

3k−1b 
− 

3k 
= .

3kb 
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Again the largest n is chosen so that the resulting rational number is nonnegative. This justifies 
the algorithm. 

Proposition 1. If x ∈ C, then x has a ternary expansion consisting of only 0’s and 2’s. 

Proof. We prove this statement by induction. It is clear for the first ternary place, since the 
2 

3 , 3) corresponds to those x ∈ [0, 1] of the form 1/3+ i=2 ai/3i. Let us assume removed segment (1 ∞

it is true for all ternary places of x up the kth place, and we have not yet removed the kth set of 
“middle­thirds” in constructing the Cantor set. Then x lies in some segment in C, and if x lies in 
the middle third of that segment, then x is not in C, thus the kth ternary place of x must be a 0 
or a 2. The converse of this proposition is proven to be true in the same way. 

Proposition 2. The Cantor set is uncountable. 

Proof. Rather than present the (somewhat careless) proof in Devaney’s text, we use a simple 
diagonalization argument. First, suppose there existed a bijection f : N −→ C (that is, C is 
countable). Then we can enumerate the elements of C = { c1, c2, . . . } . Let cik denote the kth 
number in the ternary expansion of ci. Define a new ternary number x by the rule xk ≡ 2 − ckk, 
with x = 0.x1x2x3 . . . . Then the ternary expansion of each x differs from that of each c ∈ C 
in at least one place, but since x has a ternary expansion consisting of only 0’s and 2’s, x ∈ C, 
contradicting the assumption that f was a bijection. 
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