True-False review questions on sequences and series

Each of the statements below is either true or false. If thue, prove. If false, give a counterexample. [(an) is a sequence, [T+F is on the bottom upside down, separated by 1, in order) another notation for Eaus]

6a.
$$\langle X_n \rangle$$
 unverges $\Rightarrow \langle X_n \rangle$ bounded for all n b.

8a. For all
$$\epsilon > 0$$
, $|a_{n+1} - a_n| < \epsilon$ for $n > 1 \Rightarrow \langle a_n \rangle$ converges.

9.
$$\langle x_n \rangle \rightarrow 0 \iff \langle \frac{1}{x_n} \rangle \rightarrow \infty$$

14.
$$a_n \rightarrow L$$
, $L > 0 \Rightarrow a_n > 0$ for $w > 1$.

15.
$$a_n \rightarrow L$$
, $L \ge 0 \Rightarrow a_n \ge 0$. for $n > 1$.

[] Given
$$\epsilon > 0$$
,
 $\left| \frac{3n^2 - 1}{n^2 + n} - 3 \right| = \left| \frac{-1 - 3n}{n^2 + n} \right| < \frac{1}{n^2 + n} + \frac{3n}{n^2 + n}$
 $\left(\frac{by}{n} \Delta \neq 0 \right)$
 $\left(\frac{1}{n} + \frac{3}{n} = \frac{4}{n} \right)$
 $\left(\frac{1}{n} + \frac{3}{n} = \frac{4}{n} \right)$

2 By the ratio test,

$$|\frac{A_{n+1}}{A_n}| = \frac{|(2n+2)| \times^{n+1}}{|(n+1)! (n+2)!} \cdot \frac{n! \cdot (n+1)!}{(2n)! \times^n}$$

$$= \frac{|(2n+2)(2n+1) \times |}{|(n+1)! (n+2)!} \times |$$
as $n \to \infty$ $||x|| < ||x|| <$

is n-200 $|X| < |X| < \frac{1}{4}$, $R = \frac{1}{4}$.

diverges $\in |X| > \frac{1}{4}$, $R = \frac{1}{4}$.

$$\boxed{3} \quad \alpha_n = \frac{c^n}{n!}, \quad c>1$$

 $\frac{a_{n+1}}{a_n} = \frac{c^{n+1}}{(n+1)!} \cdot \frac{n!}{c^n} = \frac{c}{n+1}$ $\frac{c}{n+1} < 1 \text{ if } n > c-1$

: /a/decreasing if n> c-1.

b) lim an = 0:

Let N be an integer, N > 2cThen by part (a), $\frac{a_{n+1}}{a_n} = \frac{c}{n+1} < \frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$

 $a_{N+1} < \frac{1}{2} a_N$ $a_{N+2} < \frac{1}{2^2} a_N$, and in scheral

 $0 < a_{N+k} < \frac{a_N}{2^{\frac{1}{2}k}}$ as $k \neq \infty$ (Thm 3.4)

is live an = lim a N+K = 0, by the squeeze theorem.

c) You can usethe vatio test to prove that & en converges, and therefore lim ch = 0, by the nth term test for divagence.

Write a=1+h. By the binomial thin, $a^h=(1+h)^n=1+nh+n(n-1)h^2+positive$ is $a^h>n(n-1)h^2$ (since h>0) $\frac{a^n}{n}>\frac{n-1}{2}h^2$, which is >any given M if $n-1>\frac{2M}{n}$.

[5] him $a_n = L > 1 \Rightarrow a_n^{1/n} > 1$ for n > 1,

by the sequence local theorem; $\Rightarrow a_n > 1$, since $a_n > 0$;

This shows lim $a_n \neq 0$; for n > 1Since if $\lim_{n \to \infty} a_n = 0$, $a_n < 1$ for n > 1 \times (by seq. local thin.)

i. $\sum a_n$ durages, by the $n + \sum a_n = 0$.

(Then. 7.2

Then $\frac{h(n_i)}{s(h_i)} = \frac{p_i}{kp_i} = \frac{1}{k}$, so the subseq. $\frac{h(n_i)}{s(n_i)} = \frac{1}{kp_i} = \frac{1}{k}$, so the subseq. $\frac{h(n_i)}{s(n_i)} = \frac{1}{kp_i}$. Converges to $\frac{h(n_i)}{s(n_i)} = \frac{1}{k}$, and $\frac{1}{k}$ is a cluster point of the sequence $\frac{h(n_i)}{s(n_i)}$, by the duster pt. thun Limit $\frac{h(n_i)}{s(n_i)}$ doesn't exist, for if it had the limit L, all subsequences would have limit (subsequences), which is not the case.

Theose of to be any element of S

such that $x_n > n$.

Such an ett. exists since S is nonempty to
not bounded above (if there were no such x_n ,

then in would be an upper band for S).

Then lim $x_n = \infty$, since (by Defn 33),

given M > 0, $x_n > n > M$ for all n > M, infor all n > 1.

(B) tan X has period TT has period TT has period TT has length TTz, "

contains an integer no contains similarly, [T/4+kT, 34+kT] integer no

Itan ni | < 1

i. tan ni is bounded,
and has a convergent subseq.

tan ni by B-W

which is also a subseq. of tan n.

MIT OpenCourseWare http://ocw.mit.edu

18.100A Introduction to Analysis Fall 2012

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.