
Corrections and Changes to the Third through the Seventh Printings
Revised Oct. 8, 2011

The third printing has 10 9 8 7 6 5 4 3 on the first left-hand page. Later printings end
with higher numbers (currently: 4, 5, 6, or 7).

The list below omits:

minor English typos (doubled periods, wrong punctuation, accidental misspellings);
minor non-confusing mathematical typos: poor spacing is the most common.

Bullets mark the more significant changes or corrections: missing or altered hypotheses,
non-evident typos, new hints or simplifications, etc.

Double bullets mark new exercises or substantially changed ones, or significant changes
to or errors in the text material.

p. 10, Def. 1.6B: read: Any such C . . .
• p. 30, Ex. 2.1/3: replace: change the hypothesis on {bn} by: strengthen the hypotheses

(cf. p. 405, Example A.1E for the meaning iof “stronger”)
• p. 30, Ex. 2.2/1b: read: (make the upper bound sharp)

p. 47, Ex. 3.3/1d: replace semicolons by commas

•• p. 48 Add:
3-5 Given any c in R, prove there is a strictly increasing sequence {an} and a strictly

decreasing sequence {bn}, both of which converge to c, and such that all the an and bn are
(i) rational numbers; (ii) irrational numbers. (Theorem 2.5 is helpful.)

p. 55, line 7: read: if 0 < |en| < .9,
p. 57, display (17): read: if 0 < |en| ≤ .2

• p. 58, Ex. 4.3/2: Omit. (too hard)
p. 60, Ans. 4.3/2: read: 1024
p. 63, display (9): delete: > 0
p. 63, line 11 from bottom: read: 5.1/4
p. 68, line 10: replace: hypotheses by: symbols; replace or by and

• p. 69, line 9: read: strictly increasing, clearly n1 ≥ 1, n2 ≥ 2, and so on, so eventually
lines 11, 13: replace: i � 1 by i > N

p. 73, line 2: read: an − L
p. 73, line 6-: read: and estimate it: use 2.4(4), and (16a), suitably applied to {bn}.

•• p. 74, Ex. 5.4/1 Add two preliminary warm-up exercises:
a) Prove the theorem if k = 2, and the two subsequences are the sequence of odd terms

a2i+1, and the sequence of even terms a2i.
b) Prove it in general if k = 2.
c) Prove it for any k ≥ 2.

• p. 75, Prob. 5-1(a): replace the first line of the “proof” by:
Let

√
an → M. Then by the Product Theorem for limits, an → M2, so that

p. 82, Proof (line 2): change: an to xn

p. 89, Ex. 6.1/1a: change cn to an

p. 89, Ex. 6.1/1b add: to the limit L given in the Nested Intervals Theorem.

•• p. 89, Ex. 6.2 add: 3. Find the cluster points of the sequence {ν(n)} of Problem 5-4.
•• p. 90, Ex. 6.3 add: 2. Prove the Bolzano-Weierstrass Theorem without using the
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Cluster Point Theorem (show you can pick an xni
in [ai, bi]).

p. 90, Ex. 6.5/4: read: non-empty bounded subsets
p. 95, Display (6): delete: e
p. 104, l. 10- read: N + 1
p. 106, l. 10 read:

∑

(−1)n+1/n
p. 107, l. 2,3 insert: this follows by Exercise 6.1/1b, or reasoning directly, the picture
p. 108, bottom half through top p.109 replace everywhere: “positive” and “negative” by

“non-negative” and “non-positive” respectively
p. 114, line 3- replace: ≤ by <
p. 115, line 12- read: |an| < 1

•• Question 8.2/2 the series is not Abel-summable; replace by: Show the Abel sum of
0 + 1 − 1

2
+ 1 1

3
−

4
+ . . . is the same as its ordinary sum (cf. 4.2).

p. 121, line 9 read: 8.4A

•• p. 122, line 12 replace by: dn − en, where dn and en are respectively the two positive
series in the line above.

Replace to the end c+
n and c−n by dn and en; add after the next paragraph:

Since dn and en are positive series, they are absolutely convergent, and
∑

|cn| =
∑

|dn − en| ≤
∑

(|dn| + |en|) =
∑

dn +
∑

en,
which shows that

∑

cn is also absolutely convergent.

•• p. 124, Problems add: 8-2 The multiplication theorem for series requires that the two
series be absolutely convergent; if this condition is not met, their product may be divergent.

∞

Show that the series
∑ (−1)i

√ gives an example: it is conditionally convergent, but its
0

i + 1

product with itself is divergent. (Estimate the size of the odd terms c2n+1 in the product.)

•• p. 124, 8.2 2. 0 + x − 1x2 + 1 3 1 4

2 3
x −

4
x + . . . = ln(1 + x); Abel sum is ln 2 (cf. 4.2).

p. 130, line 13: Fourier analysis is devoted to studying to what extent periodic functions
• p. 135, Add hypotheses: a1 > 0, f(a1) = a1, f(a2) = a2.
• p. 143, Example 10.3A and Solution. in x4 < x2, x3 < x2 replace < by ≤

p. 144, line 4- read: non-zero polynomial
• p. 148, Ex. 10.1/7a(ii) read: is strictly decreasing

p. 154, first line below pictures: read: points of discontinuity
p. 154, line 8 from bottom insert paragraph:
On the other hand, functions like the one in Exercise 11.5/4 which are discontinuous (i.e.,

not continuous) at every point of some interval are somewhat pathological and not generally
useful in applications; in this book we won’t refer to their x-values as points of discontinuity
since “when everyone is somebody, then no one’s anybody”. If necessary, we will use the
oxymoronic “non-isolated point of discontinuity”.

p. 156, line 4: read: In (8) below, the first limit exists if and only if the second and third
exist and are equal;

p. 157, line 5: read: x << −1
p. 161, line 11: delete ; , line 12: read <, line 13 read ≤

• p. 164, read: Thm.11.4D′ Let x = g(t), I be a t-interval, J be an x-interval. Then

g(t) continuous on I , g(I) ⊆ J , and f(x) continuous on J ⇒ f(g(t)) continuous on I .

p. 167, Ex. 11.1/4 read: exponential law, ea+b = eaeb,

• 1
p. 168, Ex. 11.3/3 read: b) limx→0−

∫

0
t2/(1 + t4x) dt = 1/3.
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p. 168, Ex. 11.3/5 add: As x → x0,
• p. 168, Ex. 11.5/2: rewrite: Prove lim sin x does not exist by using Theorem 11.5A.

x→∞

p. 180, Ex. 12.1/3: read: a polynomial
p. 180. Ex. 12.2/1: add at end: Make reasonable assumptions.
p. 181, Ex. 12.2/3: change: solutions to zeros
p. 183, 12.1/4: read: log2[(b − a)/e]

• p. 192, Ex. 13.1/2 renumber as 13.2/2, and change part (b) to:
13.2/2b Is there a continuous function which satisfies the conditions of part (a)?

Justify your answer.
p. 193, Ex. 13.5/2 change the two R to R

p. 194, Problem 13-7 last two lines, read: but for the part of that argument using the
compactness of [a, b], subnstitute part (a) of 13-6 above.)

p. 203, Theorem 14.3B: label: Local Extremum Theorem
p. 204, line 4: read: an open I
p. 221, line 11- read: (a, b)

Sol’n 15.4/1c: read: not one-third!
p. 227, line 2: read: f ′(x) not convex
p. 228, Ex. 16.1/1a,b read: (0, 1]; Ex. 1b: x − x2/2
p. 228, Ex. 16.2/1 replace: the second derivative test by each statement in (8)
p. 230, Ans. 16.1/2 change 9 to 0
p. 231, line 3- change k to a

p. 235, display (15): change 0 < |c| < |x| to

{

0 < c < x,
; delete next two lines

x < c < 0 .
• p. 243, Example 18.2, Solution, lines 4 and 7 read: [0, x1]

p. 245 lines 1,2: f(xi−1)), line 15: two underscripts: [∆xi]
• p. 248, Ex. 18.2/1 add: Hint: cf. Question 18.2/4; use x2−x2

i i−1 = (xi +xi−1)(xi−xi−1);
i.e., do it directly, not using the general theorems in 18.3.

p. 248, Ex. 18.3/1 replace n by k everywhere

•• p. 260, Defn. 19.6 read: a = x0 < x1 < . . . < xn−1 < xn = b
add at end: and has finite left and right limits at each xi (just a finite one-sided limit at

x0, xn). (Thus f(x) can have discontinuities only at the xi, and they are jump or removable
discontinuities.)

• p. 261, Solution. a) tan x is piecewise monotone with respect to < 0, π/2, 3π/2, 2π >,
but not piecewise continuous since its limits at π/2 and 3π/2 are not finite.

(b) read: [1/(n + 1)π, 1/nπ]
p. 261, Lemma 19.6 rename: Endpoint Lemma
p. 261, line 7- replace: [c, d] by [a, b]
p. 265, Ex. 19.6/1b line 2 replace: f(x) by p(x)
p. 273, line 2- : read: (cf. p. 271)
p. 282, line 2- : read: by interpreting the integral and limit geometrically
p. 289, Ans. 20.5/1: read: 1024

p. 291, Ex. 21.1B - line 3: read: limR→∞

∫ 0

−R

line -2: read: for p > 1,
n

p. 307, Example 22.1C read: Show: as n
∞

→ ∞, . . .
1 + nx

p. 310, Theorem 22.B read:
0

Mk

p. 316, Theorem 22.5A: delete:

∑

for all n ≥ 0
p. 322, Ex. 22.1/3 read: uk(x) =
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p. 332, middle delete both ℵ1, replace the third display by: ℵ0 = N(Z) < N(S) < N(R)
p. 335, lines 6-,7-: read: bounded and have only a finite number of jump discontinuities

•• p. 340, delete: last 9 lines of text before Questions 23.4
p. 350, line 10-: read: Subsequence Theorem 5.4
p. 351, line 5-: read: infinite quarter-planes containing the x-axis and lying between ...

• p. 353, line 4-: read: 24.4A;
line 2-: read: x + y = 2

p. 354, Theorem 24.5B: read: for all xn

line 7- read: f(xn)
p. 357, Theorem 24.7B, line 2 read: non-empty compact set S;

line 6 read: bounded and non-empty;
p. 367, line 15- add: Or make up a simple direct proof.

p. 369, Theorem 25.3A: (i) read: then S = ; (ii) read: S =
⋃

Ui

iεI

p. 377, Ex. 26.2B, Solution line 2: read: (−∞,∞) change (
1

∗) to (5) throughout

p. 385, line 2- read:
∫

0

•• p. 388, footnote replace by: We prove the first inequality in (7), which is the analog –
for absolutely convergent improper integrals – of the infinite triangle inequality for sums.

For a fixed x, we have by the Absolute Value Theorem for integrals (19.4C)
∣

S S

R
f(x, t) dt

∣

≤
R

f(x, t) dt, for all S > R, R fixed.

As S → ∞, the

∣

∫

∣

∫
∣

∣

right side

∣

has the limit

∣

∣ ∣

∞

R
|f(x, t)| dt, since the integral

∞

R
f(x, t) dt

is assumed to be absolutely convergent.
The left side has the limit |

∫

∞

∫ ∫

R
f(x, t) dt|, since the integral is convergent (by theorem

21.4), and | | is a continuous function.
Finally, by the Limit Location Theorem 11.3C (21), the inequality is preserved as S → ∞.

p. 399, line 18- read: a(b + c) = ab + ac
p. 404, Example A.1C(i): read: a2 + b2 = c2

p. 415, Ex. A.4/6 read: Fermat’s Little Theorem is the basis of the RSA encryption
algorithm, widely used to guarantee website security.

p. 417, A.4/1 line 1: read: both sides are 1
A.4/2 line 1: read: 2n + 1

•• p. 429 last 5 lines: replace sentences by: As the picture shows, since |f ′(x)| > 1.2 on
[.7, 1], we will have its reciprocal |g′(x)| < 1/1.2 ≈ .8 on the interval [0, f(.7)] = [0, .83].

This shows Pic-2 is satisfied for g(x) on the interval [0, .83]; the picture shows the root of
x = g(x) will lie in this interval. Thus the Picard method is applicable to x = g(x). Starting
with say .7, it leads to a root ≈ .76.

p. 436, Remarks, first paragraph: replace x3 by x4

p. 439, top half: change p and q to P and Q (to avoid confusion with the use of the real
number p in Example D.4)

p. 442, line 2: read: ≥ line 6: read: ≤

•• p.443, Ex. D.2/4: read: Find, by calculating the derivatives for x = 0 and using
undetermined coefficients, a second-order linear homogeneous D.E. satisfied by

y = x4 sin(1/x), y(0) = 0, ...
p. 459, ruler function: read: 169
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